|
import streamlit as st |
|
import asyncio |
|
import websockets |
|
import uuid |
|
from datetime import datetime |
|
import os |
|
import random |
|
import time |
|
import hashlib |
|
from PIL import Image |
|
import glob |
|
import base64 |
|
import io |
|
import streamlit.components.v1 as components |
|
import edge_tts |
|
from audio_recorder_streamlit import audio_recorder |
|
import nest_asyncio |
|
import re |
|
import pytz |
|
import shutil |
|
import anthropic |
|
import openai |
|
from PyPDF2 import PdfReader |
|
import threading |
|
import json |
|
import zipfile |
|
from gradio_client import Client |
|
from dotenv import load_dotenv |
|
from streamlit_marquee import streamlit_marquee |
|
from collections import defaultdict, Counter |
|
import pandas as pd |
|
|
|
|
|
nest_asyncio.apply() |
|
|
|
|
|
st.set_page_config( |
|
page_title="🚲TalkingAIResearcher🏆", |
|
page_icon="🚲🏆", |
|
layout="wide", |
|
initial_sidebar_state="auto" |
|
) |
|
|
|
|
|
icons = '🤖🧠🔬📝' |
|
Site_Name = '🤖🧠Chat & Quote Node📝🔬' |
|
START_ROOM = "Sector 🌌" |
|
FUN_USERNAMES = { |
|
"CosmicJester 🌌": "en-US-AriaNeural", |
|
"PixelPanda 🐼": "en-US-JennyNeural", |
|
"QuantumQuack 🦆": "en-GB-SoniaNeural", |
|
"StellarSquirrel 🐿️": "en-AU-NatashaNeural", |
|
"GizmoGuru ⚙️": "en-CA-ClaraNeural", |
|
"NebulaNinja 🌠": "en-US-GuyNeural", |
|
"ByteBuster 💾": "en-GB-RyanNeural", |
|
"GalacticGopher 🌍": "en-AU-WilliamNeural", |
|
"RocketRaccoon 🚀": "en-CA-LiamNeural", |
|
"EchoElf 🧝": "en-US-AnaNeural", |
|
"PhantomFox 🦊": "en-US-BrandonNeural", |
|
"WittyWizard 🧙": "en-GB-ThomasNeural", |
|
"LunarLlama 🌙": "en-AU-FreyaNeural", |
|
"SolarSloth ☀️": "en-CA-LindaNeural", |
|
"AstroAlpaca 🦙": "en-US-ChristopherNeural", |
|
"CyberCoyote 🐺": "en-GB-ElliotNeural", |
|
"MysticMoose 🦌": "en-AU-JamesNeural", |
|
"GlitchGnome 🧚": "en-CA-EthanNeural", |
|
"VortexViper 🐍": "en-US-AmberNeural", |
|
"ChronoChimp 🐒": "en-GB-LibbyNeural" |
|
} |
|
EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values())) |
|
FILE_EMOJIS = {"md": "📝", "mp3": "🎵", "png": "🖼️", "mp4": "🎥"} |
|
|
|
|
|
for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "audio_cache", "paper_metadata"]: |
|
os.makedirs(d, exist_ok=True) |
|
|
|
CHAT_DIR = "chat_logs" |
|
VOTE_DIR = "vote_logs" |
|
MEDIA_DIR = "." |
|
AUDIO_CACHE_DIR = "audio_cache" |
|
AUDIO_DIR = "audio_logs" |
|
PAPER_DIR = "paper_metadata" |
|
STATE_FILE = "user_state.txt" |
|
|
|
CHAT_FILE = os.path.join(CHAT_DIR, "global_chat.md") |
|
QUOTE_VOTES_FILE = os.path.join(VOTE_DIR, "quote_votes.md") |
|
IMAGE_VOTES_FILE = os.path.join(VOTE_DIR, "image_votes.md") |
|
HISTORY_FILE = os.path.join(VOTE_DIR, "vote_history.md") |
|
|
|
|
|
load_dotenv() |
|
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', "")) |
|
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', "")) |
|
openai_client = openai.OpenAI(api_key=openai_api_key) |
|
|
|
|
|
def format_timestamp_prefix(username=""): |
|
central = pytz.timezone('US/Central') |
|
now = datetime.now(central) |
|
return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}" |
|
|
|
|
|
class PerformanceTimer: |
|
def __init__(self, name): |
|
self.name, self.start = name, None |
|
def __enter__(self): |
|
self.start = time.time() |
|
return self |
|
def __exit__(self, *args): |
|
duration = time.time() - self.start |
|
st.session_state['operation_timings'][self.name] = duration |
|
st.session_state['performance_metrics'][self.name].append(duration) |
|
|
|
|
|
def init_session_state(): |
|
defaults = { |
|
'server_running': False, 'server_task': None, 'active_connections': {}, |
|
'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [], |
|
'message_text': "", 'audio_cache': {}, 'pasted_image_data': None, |
|
'quote_line': None, 'refresh_rate': 5, 'base64_cache': {}, |
|
'transcript_history': [], 'last_transcript': "", 'image_hashes': set(), |
|
'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': { |
|
"background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px", |
|
"animationDuration": "20s", "width": "100%", "lineHeight": "35px" |
|
}, 'operation_timings': {}, 'performance_metrics': defaultdict(list), |
|
'enable_audio': True, 'download_link_cache': {}, 'username': None, |
|
'autosend': True, 'autosearch': True, 'last_message': "", 'last_query': "", |
|
'mp3_files': {}, 'timer_start': time.time(), 'quote_index': 0, |
|
'quote_source': "famous", 'last_sent_transcript': "", 'old_val': None, |
|
'last_refresh': time.time(), 'paper_metadata': {}, 'paste_image_base64': "" |
|
} |
|
for k, v in defaults.items(): |
|
if k not in st.session_state: |
|
st.session_state[k] = v |
|
|
|
|
|
def update_marquee_settings_ui(): |
|
st.sidebar.markdown("### 🎯 Marquee Settings") |
|
cols = st.sidebar.columns(2) |
|
with cols[0]: |
|
st.session_state['marquee_settings']['background'] = st.color_picker("🎨 Background", "#1E1E1E") |
|
st.session_state['marquee_settings']['color'] = st.color_picker("✍️ Text", "#FFFFFF") |
|
with cols[1]: |
|
st.session_state['marquee_settings']['font-size'] = f"{st.slider('📏 Size', 10, 24, 14)}px" |
|
st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('⏱️ Speed', 1, 20, 20)}s" |
|
|
|
def display_marquee(text, settings, key_suffix=""): |
|
truncated = text[:280] + "..." if len(text) > 280 else text |
|
streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}") |
|
st.write("") |
|
|
|
|
|
def clean_text_for_tts(text): |
|
return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text" |
|
|
|
def clean_text_for_filename(text): |
|
return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:200] |
|
|
|
def get_high_info_terms(text, top_n=10): |
|
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'} |
|
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) |
|
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] |
|
filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2] |
|
return [t for t, _ in Counter(filtered).most_common(top_n)] |
|
|
|
def generate_filename(prompt, username, file_type="md", title=None): |
|
timestamp = format_timestamp_prefix(username) |
|
if title: |
|
high_info = '-'.join(get_high_info_terms(title, 5)) |
|
return f"{timestamp}-{clean_text_for_filename(prompt[:20])}-{high_info}.{file_type}" |
|
hash_val = hashlib.md5(prompt.encode()).hexdigest()[:8] |
|
return f"{timestamp}-{hash_val}.{file_type}" |
|
|
|
def create_file(prompt, username, file_type="md", title=None): |
|
filename = generate_filename(prompt, username, file_type, title) |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write(prompt) |
|
return filename |
|
|
|
def get_download_link(file, file_type="mp3"): |
|
cache_key = f"dl_{file}" |
|
if cache_key not in st.session_state['download_link_cache']: |
|
with open(file, "rb") as f: |
|
b64 = base64.b64encode(f.read()).decode() |
|
mime_types = {"mp3": "audio/mpeg", "png": "image/png", "mp4": "video/mp4", "md": "text/markdown", "zip": "application/zip"} |
|
st.session_state['download_link_cache'][cache_key] = f'<a href="data:{mime_types.get(file_type, "application/octet-stream")};base64,{b64}" download="{os.path.basename(file)}">{FILE_EMOJIS.get(file_type, "Download")} Download {os.path.basename(file)}</a>' |
|
return st.session_state['download_link_cache'][cache_key] |
|
|
|
def save_username(username): |
|
try: |
|
with open(STATE_FILE, 'w') as f: |
|
f.write(username) |
|
except Exception as e: |
|
print(f"Failed to save username: {e}") |
|
|
|
def load_username(): |
|
if os.path.exists(STATE_FILE): |
|
try: |
|
with open(STATE_FILE, 'r') as f: |
|
return f.read().strip() |
|
except Exception as e: |
|
print(f"Failed to load username: {e}") |
|
return None |
|
|
|
def concatenate_markdown_files(): |
|
md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True) |
|
all_md_content = "" |
|
for md_file in md_files: |
|
with open(md_file, 'r', encoding='utf-8') as f: |
|
all_md_content += f.read() + "\n\n---\n\n" |
|
return all_md_content.strip() |
|
|
|
|
|
async def async_edge_tts_generate(text, voice, username, rate=0, pitch=0, file_format="mp3"): |
|
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}" |
|
if cache_key in st.session_state['audio_cache']: |
|
return st.session_state['audio_cache'][cache_key], 0 |
|
start_time = time.time() |
|
text = clean_text_for_tts(text) |
|
if not text or text == "No text": |
|
print(f"Skipping audio generation for empty/invalid text: '{text}'") |
|
return None, 0 |
|
filename = f"{format_timestamp_prefix(username)}-{hashlib.md5(text.encode()).hexdigest()[:8]}.{file_format}" |
|
try: |
|
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz") |
|
await communicate.save(filename) |
|
st.session_state['audio_cache'][cache_key] = filename |
|
return filename, time.time() - start_time |
|
except edge_tts.exceptions.NoAudioReceived as e: |
|
print(f"No audio received for text: '{text}' with voice: {voice}. Error: {e}") |
|
return None, 0 |
|
except Exception as e: |
|
print(f"Error generating audio for text: '{text}' with voice: {voice}. Error: {e}") |
|
return None, 0 |
|
|
|
def play_and_download_audio(file_path): |
|
if file_path and os.path.exists(file_path): |
|
st.audio(file_path) |
|
st.markdown(get_download_link(file_path), unsafe_allow_html=True) |
|
|
|
def load_mp3_viewer(): |
|
mp3_files = sorted(glob.glob(f"*.mp3"), key=os.path.getmtime, reverse=True) |
|
for mp3 in mp3_files: |
|
filename = os.path.basename(mp3) |
|
if filename not in st.session_state['mp3_files']: |
|
st.session_state['mp3_files'][filename] = mp3 |
|
|
|
async def save_chat_entry(username, message, voice, is_markdown=False): |
|
if not message.strip() or message == st.session_state.last_transcript: |
|
return None, None |
|
central = pytz.timezone('US/Central') |
|
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S") |
|
entry = f"[{timestamp}] {username} ({voice}): {message}" if not is_markdown else f"[{timestamp}] {username} ({voice}):\n```markdown\n{message}\n```" |
|
md_file = create_file(entry, username, "md") |
|
with open(CHAT_FILE, 'a') as f: |
|
f.write(f"{entry}\n") |
|
audio_file, _ = await async_edge_tts_generate(message, voice, username) |
|
if audio_file: |
|
with open(HISTORY_FILE, 'a') as f: |
|
f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n") |
|
st.session_state['mp3_files'][os.path.basename(audio_file)] = audio_file |
|
await broadcast_message(f"{username}|{message}", "chat") |
|
st.session_state.last_chat_update = time.time() |
|
st.session_state.chat_history.append(entry) |
|
st.session_state.last_transcript = message |
|
return md_file, audio_file |
|
|
|
async def load_chat(): |
|
if not os.path.exists(CHAT_FILE): |
|
with open(CHAT_FILE, 'a') as f: |
|
f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! 🎤\n") |
|
with open(CHAT_FILE, 'r') as f: |
|
content = f.read().strip() |
|
lines = content.split('\n') |
|
unique_lines = list(dict.fromkeys(line for line in lines if line.strip())) |
|
return unique_lines |
|
|
|
|
|
async def perform_claude_search(query, username, image=None): |
|
if not query.strip() or query == st.session_state.last_transcript: |
|
return None, None, None |
|
client = anthropic.Anthropic(api_key=anthropic_key) |
|
message_content = [{"type": "text", "text": query}] |
|
if image: |
|
buffered = io.BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
message_content.append({ |
|
"type": "image", |
|
"source": { |
|
"type": "base64", |
|
"media_type": "image/png", |
|
"data": img_base64 |
|
} |
|
}) |
|
response = client.messages.create( |
|
model="claude-3-sonnet-20240229", |
|
max_tokens=1000, |
|
messages=[{"role": "user", "content": message_content}] |
|
) |
|
result = response.content[0].text |
|
st.markdown(f"### Claude's Reply 🧠\n{result}") |
|
|
|
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural") |
|
md_file, audio_file = await save_chat_entry(username, f"Claude Search: {query}\nResponse: {result}", voice, True) |
|
return md_file, audio_file, result |
|
|
|
|
|
async def perform_arxiv_search(query, username, claude_result=None): |
|
if not query.strip() or query == st.session_state.last_transcript: |
|
return None, None |
|
if claude_result is None: |
|
client = anthropic.Anthropic(api_key=anthropic_key) |
|
claude_response = client.messages.create( |
|
model="claude-3-sonnet-20240229", |
|
max_tokens=1000, |
|
messages=[{"role": "user", "content": query}] |
|
) |
|
claude_result = claude_response.content[0].text |
|
st.markdown(f"### Claude's Reply 🧠\n{claude_result}") |
|
|
|
enhanced_query = f"{query}\n\n{claude_result}" |
|
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
refs = gradio_client.predict( |
|
enhanced_query, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md" |
|
)[0] |
|
result = f"🔎 {enhanced_query}\n\n{refs}" |
|
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural") |
|
md_file, audio_file = await save_chat_entry(username, f"ArXiv Search: {query}\nClaude Response: {claude_result}\nArXiv Results: {refs}", voice, True) |
|
return md_file, audio_file |
|
|
|
async def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False): |
|
start = time.time() |
|
client = anthropic.Anthropic(api_key=anthropic_key) |
|
response = client.messages.create( |
|
model="claude-3-sonnet-20240229", |
|
max_tokens=1000, |
|
messages=[{"role": "user", "content": q}] |
|
) |
|
st.write("Claude's reply 🧠:") |
|
st.markdown(response.content[0].text) |
|
|
|
result = response.content[0].text |
|
md_file = create_file(result, "System", "md") |
|
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice'], "System") |
|
st.subheader("📝 Main Response Audio") |
|
play_and_download_audio(audio_file) |
|
|
|
papers = [] |
|
if useArxiv: |
|
q = q + result |
|
st.write('Running Arxiv RAG with Claude inputs.') |
|
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
refs = gradio_client.predict( |
|
q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md" |
|
)[0] |
|
papers = parse_arxiv_refs(refs, q) |
|
for paper in papers: |
|
filename = create_file(generate_5min_feature_markdown(paper), "System", "md", paper['title']) |
|
paper['md_file'] = filename |
|
st.session_state['paper_metadata'][paper['title']] = filename |
|
if papers and useArxivAudio: |
|
await create_paper_audio_files(papers, q) |
|
elapsed = time.time() - start |
|
st.write(f"**Total Elapsed:** {elapsed:.2f} s") |
|
return result, papers |
|
|
|
|
|
async def websocket_handler(websocket, path): |
|
client_id = str(uuid.uuid4()) |
|
room_id = "chat" |
|
if room_id not in st.session_state.active_connections: |
|
st.session_state.active_connections[room_id] = {} |
|
st.session_state.active_connections[room_id][client_id] = websocket |
|
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys()))) |
|
chat_content = await load_chat() |
|
if not any(f"Client-{client_id}" in line for line in chat_content): |
|
await save_chat_entry("System 🌟", f"{username} has joined {START_ROOM}!", "en-US-AriaNeural") |
|
try: |
|
async for message in websocket: |
|
if '|' in message: |
|
username, content = message.split('|', 1) |
|
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural") |
|
await save_chat_entry(username, content, voice) |
|
else: |
|
await websocket.send("ERROR|Message format: username|content") |
|
except websockets.ConnectionClosed: |
|
await save_chat_entry("System 🌟", f"{username} has left {START_ROOM}!", "en-US-AriaNeural") |
|
finally: |
|
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]: |
|
del st.session_state.active_connections[room_id][client_id] |
|
|
|
async def broadcast_message(message, room_id): |
|
if room_id in st.session_state.active_connections: |
|
disconnected = [] |
|
for client_id, ws in st.session_state.active_connections[room_id].items(): |
|
try: |
|
await ws.send(message) |
|
except websockets.ConnectionClosed: |
|
disconnected.append(client_id) |
|
for client_id in disconnected: |
|
if client_id in st.session_state.active_connections[room_id]: |
|
del st.session_state.active_connections[room_id][client_id] |
|
|
|
async def run_websocket_server(): |
|
if not st.session_state.server_running: |
|
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765) |
|
st.session_state.server_running = True |
|
await server.wait_closed() |
|
|
|
def start_websocket_server(): |
|
asyncio.run(run_websocket_server()) |
|
|
|
|
|
class AudioProcessor: |
|
def __init__(self): |
|
self.cache_dir = AUDIO_CACHE_DIR |
|
os.makedirs(self.cache_dir, exist_ok=True) |
|
self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {} |
|
|
|
def _save_metadata(self): |
|
with open(f"{self.cache_dir}/metadata.json", 'w') as f: |
|
json.dump(self.metadata, f) |
|
|
|
async def create_audio(self, text, voice='en-US-AriaNeural'): |
|
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest() |
|
cache_path = f"{self.cache_dir}/{cache_key}.mp3" |
|
if cache_key in self.metadata and os.path.exists(cache_path): |
|
return cache_path |
|
text = clean_text_for_tts(text) |
|
if not text: |
|
return None |
|
communicate = edge_tts.Communicate(text, voice) |
|
await communicate.save(cache_path) |
|
self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice} |
|
self._save_metadata() |
|
return cache_path |
|
|
|
def process_pdf(pdf_file, max_pages, voice, audio_processor): |
|
reader = PdfReader(pdf_file) |
|
total_pages = min(len(reader.pages), max_pages) |
|
texts, audios = [], {} |
|
async def process_page(i, text): |
|
audio_path = await audio_processor.create_audio(text, voice) |
|
if audio_path: |
|
audios[i] = audio_path |
|
for i in range(total_pages): |
|
text = reader.pages[i].extract_text() |
|
texts.append(text) |
|
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start() |
|
return texts, audios, total_pages |
|
|
|
|
|
def parse_arxiv_refs(ref_text, query): |
|
if not ref_text: |
|
return [] |
|
papers = [] |
|
current = {} |
|
for line in ref_text.split('\n'): |
|
if line.count('|') == 2: |
|
if current: |
|
papers.append(current) |
|
date, title, *_ = line.strip('* ').split('|') |
|
url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}" |
|
current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': '', 'query': query} |
|
elif current: |
|
if not current['authors']: |
|
current['authors'] = line.strip('* ') |
|
else: |
|
current['summary'] += ' ' + line.strip() if current['summary'] else line.strip() |
|
if current: |
|
papers.append(current) |
|
return papers[:20] |
|
|
|
def generate_5min_feature_markdown(paper): |
|
title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url'] |
|
pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "") |
|
wct, sw = len(title.split()), len(summary.split()) |
|
terms = get_high_info_terms(summary, 15) |
|
rouge = round((len(terms) / max(sw, 1)) * 100, 2) |
|
mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```" |
|
return f""" |
|
## 📄 {title} |
|
**Authors:** {authors} |
|
**Date:** {date} |
|
**Words:** Title: {wct}, Summary: {sw} |
|
**Links:** [Abstract]({url}) | [PDF]({pdf_url}) |
|
**Terms:** {', '.join(terms)} |
|
**ROUGE:** {rouge}% |
|
### 🎤 TTF Read Aloud |
|
- **Title:** {title} |
|
- **Terms:** {', '.join(terms)} |
|
- **ROUGE:** {rouge}% |
|
#### Concepts Graph |
|
{mermaid} |
|
--- |
|
""" |
|
|
|
async def create_paper_audio_files(papers, query): |
|
for p in papers: |
|
audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}") |
|
p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice'], p['authors']) |
|
if p['full_audio']: |
|
p['download_base64'] = get_download_link(p['full_audio']) |
|
|
|
def save_vote(file, item, user_hash): |
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
entry = f"[{timestamp}] {user_hash} voted for {item}" |
|
try: |
|
with open(file, 'a') as f: |
|
f.write(f"{entry}\n") |
|
with open(HISTORY_FILE, 'a') as f: |
|
f.write(f"- {timestamp} - User {user_hash} voted for {item}\n") |
|
return True |
|
except Exception as e: |
|
print(f"Vote save flop: {e}") |
|
return False |
|
|
|
def load_votes(file): |
|
if not os.path.exists(file): |
|
with open(file, 'w') as f: |
|
f.write("# Vote Tally\n\nNo votes yet - get clicking! 🖱️\n") |
|
try: |
|
with open(file, 'r') as f: |
|
lines = f.read().strip().split('\n') |
|
votes = {} |
|
for line in lines[2:]: |
|
if line.strip() and 'voted for' in line: |
|
item = line.split('voted for ')[1] |
|
votes[item] = votes.get(item, 0) + 1 |
|
return votes |
|
except Exception as e: |
|
print(f"Vote load oopsie: {e}") |
|
return {} |
|
|
|
def generate_user_hash(): |
|
if 'user_hash' not in st.session_state: |
|
session_id = str(random.getrandbits(128)) |
|
hash_object = hashlib.md5(session_id.encode()) |
|
st.session_state['user_hash'] = hash_object.hexdigest()[:8] |
|
return st.session_state['user_hash'] |
|
|
|
async def save_pasted_image(image, username): |
|
img_hash = hashlib.md5(image.tobytes()).hexdigest()[:8] |
|
if img_hash in st.session_state.image_hashes: |
|
return None |
|
timestamp = format_timestamp_prefix(username) |
|
filename = f"{timestamp}-{img_hash}.png" |
|
filepath = filename |
|
image.save(filepath, "PNG") |
|
st.session_state.image_hashes.add(img_hash) |
|
return filepath |
|
|
|
|
|
def create_zip_of_files(md_files, mp3_files, png_files, mp4_files, query): |
|
all_files = md_files + mp3_files + png_files + mp4_files |
|
if not all_files: |
|
return None |
|
terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in all_files] + [query]), 5) |
|
zip_name = f"{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip" |
|
with zipfile.ZipFile(zip_name, 'w') as z: |
|
[z.write(f) for f in all_files] |
|
return zip_name |
|
|
|
|
|
def paste_image_component(): |
|
with st.form(key="paste_form"): |
|
|
|
paste_input = st.text_input("Paste Base64 Image Here (hidden)", value="", key="paste_input", label_visibility="collapsed") |
|
|
|
st.markdown(""" |
|
<script> |
|
function pasteClipboard() { |
|
navigator.clipboard.readText().then(text => { |
|
document.getElementById('paste_input').value = text; |
|
document.getElementById('paste_form').requestSubmit(); |
|
}).catch(err => { |
|
console.error('Failed to read clipboard: ', err); |
|
document.getElementById('paste_input').value = 'ERROR: ' + err.message; |
|
document.getElementById('paste_form').requestSubmit(); |
|
}); |
|
} |
|
</script> |
|
""", unsafe_allow_html=True) |
|
|
|
paste_button = st.form_submit_button("Paste Image 📋", on_click=lambda: st.markdown("<script>pasteClipboard();</script>", unsafe_allow_html=True)) |
|
|
|
if paste_button and paste_input: |
|
if paste_input.startswith('ERROR:'): |
|
st.warning(f"Paste failed: {paste_input}") |
|
return None |
|
if paste_input.startswith('data:image'): |
|
try: |
|
base64_str = paste_input.split(',')[1] |
|
img_bytes = base64.b64decode(base64_str) |
|
img = Image.open(io.BytesIO(img_bytes)) |
|
return img |
|
except Exception as e: |
|
st.warning(f"Error decoding pasted image: {e}") |
|
return None |
|
else: |
|
st.warning("Clipboard does not contain a valid image (expected base64 data:image)") |
|
return None |
|
return None |
|
|
|
|
|
def main(): |
|
init_session_state() |
|
load_mp3_viewer() |
|
saved_username = load_username() |
|
if saved_username and saved_username in FUN_USERNAMES: |
|
st.session_state.username = saved_username |
|
if not st.session_state.username: |
|
available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in asyncio.run(load_chat()))] |
|
st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys())) |
|
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username] |
|
asyncio.run(save_chat_entry("System 🌟", f"{st.session_state.username} has joined {START_ROOM}!", "en-US-AriaNeural")) |
|
save_username(st.session_state.username) |
|
|
|
st.title(f"{Site_Name} for {st.session_state.username}") |
|
update_marquee_settings_ui() |
|
display_marquee(f"🚀 Welcome to {START_ROOM} | 🤖 {st.session_state.username}", st.session_state['marquee_settings'], "welcome") |
|
|
|
|
|
mycomponent = components.declare_component("mycomponent", path="mycomponent") |
|
val = mycomponent(my_input_value="") |
|
if val and val != st.session_state.last_transcript: |
|
val_stripped = val.strip().replace('\n', ' ') |
|
if val_stripped: |
|
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural") |
|
md_file, audio_file = asyncio.run(save_chat_entry(st.session_state.username, val_stripped, voice)) |
|
if audio_file: |
|
play_and_download_audio(audio_file) |
|
st.rerun() |
|
|
|
tab_main = st.radio("Action:", ["🎤 Chat & Voice", "🔍 ArXiv", "📚 PDF to Audio"], horizontal=True, key="tab_main") |
|
st.checkbox("Search ArXiv", value=st.session_state['use_arxiv'], key="use_arxiv") |
|
st.checkbox("ArXiv Audio", value=st.session_state['use_arxiv_audio'], key="use_arxiv_audio") |
|
st.checkbox("Autosend Chat", value=st.session_state['autosend'], key="autosend") |
|
st.checkbox("Autosearch ArXiv", value=st.session_state['autosearch'], key="autosearch") |
|
|
|
|
|
if tab_main == "🎤 Chat & Voice": |
|
st.subheader(f"{START_ROOM} Chat 💬") |
|
chat_content = asyncio.run(load_chat()) |
|
chat_container = st.container() |
|
with chat_container: |
|
numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(chat_content)) |
|
st.code(numbered_content, language="python") |
|
|
|
message = st.text_input(f"Message as {st.session_state.username}", key="message_input") |
|
|
|
|
|
pasted_image = paste_image_component() |
|
if pasted_image is not None and st.session_state['paste_image_base64'] != base64.b64encode(pasted_image.tobytes()).decode('utf-8'): |
|
st.session_state['paste_image_base64'] = base64.b64encode(pasted_image.tobytes()).decode('utf-8') |
|
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural") |
|
st.image(pasted_image, caption="Pasted Image") |
|
filename = asyncio.run(save_pasted_image(pasted_image, st.session_state.username)) |
|
if filename: |
|
st.session_state.pasted_image_data = filename |
|
image_prompt = st.text_input("Add a prompt for Claude (e.g., 'OCR this image')", key="image_prompt") |
|
if image_prompt: |
|
md_file_claude, audio_file_claude, claude_result = asyncio.run( |
|
perform_claude_search(image_prompt, st.session_state.username, pasted_image) |
|
) |
|
if audio_file_claude: |
|
play_and_download_audio(audio_file_claude) |
|
md_file_arxiv, audio_file_arxiv = asyncio.run( |
|
perform_arxiv_search(image_prompt, st.session_state.username, claude_result) |
|
) |
|
if audio_file_arxiv: |
|
play_and_download_audio(audio_file_arxiv) |
|
st.session_state.pasted_image_data = None |
|
st.session_state['paste_image_base64'] = "" |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
st.rerun() |
|
|
|
if (message and message != st.session_state.last_message) or (st.session_state.pasted_image_data and not st.session_state['paste_image_base64']): |
|
st.session_state.last_message = message |
|
col_send, col_claude, col_arxiv = st.columns([1, 1, 1]) |
|
|
|
with col_send: |
|
if st.session_state.autosend or st.button("Send 🚀", key="send_button"): |
|
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural") |
|
if message.strip(): |
|
md_file, audio_file = asyncio.run(save_chat_entry(st.session_state.username, message, voice, True)) |
|
if audio_file: |
|
play_and_download_audio(audio_file) |
|
if st.session_state.pasted_image_data: |
|
asyncio.run(save_chat_entry(st.session_state.username, f"Pasted image: {st.session_state.pasted_image_data}", voice)) |
|
st.session_state.pasted_image_data = None |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
st.rerun() |
|
|
|
with col_claude: |
|
if st.button("🧠 Claude", key="claude_button"): |
|
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural") |
|
if message.strip(): |
|
md_file, audio_file, _ = asyncio.run(perform_claude_search(message, st.session_state.username)) |
|
if audio_file: |
|
play_and_download_audio(audio_file) |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
st.rerun() |
|
|
|
with col_arxiv: |
|
if st.button("🔍 ArXiv", key="arxiv_button"): |
|
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural") |
|
if message.strip(): |
|
md_file, audio_file = asyncio.run(perform_arxiv_search(message, st.session_state.username)) |
|
if audio_file: |
|
play_and_download_audio(audio_file) |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
st.rerun() |
|
|
|
|
|
elif tab_main == "🔍 ArXiv": |
|
st.subheader("🔍 Query ArXiv") |
|
q = st.text_input("🔍 Query:", key="arxiv_query") |
|
if q and q != st.session_state.last_query: |
|
st.session_state.last_query = q |
|
if st.session_state.autosearch or st.button("🔍 Run", key="arxiv_run"): |
|
result, papers = asyncio.run(perform_ai_lookup(q, useArxiv=st.session_state['use_arxiv'], useArxivAudio=st.session_state['use_arxiv_audio'])) |
|
st.markdown(f"### Query: {q}") |
|
for i, p in enumerate(papers, 1): |
|
expander_label = f"{p['title']} | [arXiv Link]({p['url']})" |
|
with st.expander(expander_label): |
|
with open(p['md_file'], 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
numbered_content = "\n".join(f"{j+1}. {line}" for j, line in enumerate(content.split('\n'))) |
|
st.code(numbered_content, language="python") |
|
|
|
|
|
elif tab_main == "📚 PDF to Audio": |
|
audio_processor = AudioProcessor() |
|
pdf_file = st.file_uploader("Choose PDF", "pdf", key="pdf_upload") |
|
max_pages = st.slider('Pages', 1, 100, 10, key="pdf_pages") |
|
if pdf_file: |
|
with st.spinner('Processing...'): |
|
texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor) |
|
for i, text in enumerate(texts): |
|
with st.expander(f"Page {i+1}"): |
|
st.markdown(text) |
|
while i not in audios: |
|
time.sleep(0.1) |
|
if audios.get(i): |
|
st.audio(audios[i]) |
|
st.markdown(get_download_link(audios[i], "mp3"), unsafe_allow_html=True) |
|
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural") |
|
asyncio.run(save_chat_entry(st.session_state.username, f"PDF Page {i+1} converted to audio: {audios[i]}", voice)) |
|
|
|
|
|
st.header("📸 Media Gallery") |
|
all_files = sorted(glob.glob("*.md") + glob.glob("*.mp3") + glob.glob("*.png") + glob.glob("*.mp4"), key=os.path.getmtime, reverse=True) |
|
md_files = [f for f in all_files if f.endswith('.md')] |
|
mp3_files = [f for f in all_files if f.endswith('.mp3')] |
|
png_files = [f for f in all_files if f.endswith('.png')] |
|
mp4_files = [f for f in all_files if f.endswith('.mp4')] |
|
|
|
st.subheader("All Submitted Text") |
|
all_md_content = concatenate_markdown_files() |
|
with st.expander("View All Markdown Content"): |
|
st.markdown(all_md_content) |
|
|
|
st.subheader("🎵 Audio (MP3)") |
|
for mp3 in mp3_files: |
|
with st.expander(os.path.basename(mp3)): |
|
st.audio(mp3) |
|
st.markdown(get_download_link(mp3, "mp3"), unsafe_allow_html=True) |
|
|
|
st.subheader("🖼️ Images (PNG)") |
|
for png in png_files: |
|
with st.expander(os.path.basename(png)): |
|
st.image(png, use_container_width=True) |
|
st.markdown(get_download_link(png, "png"), unsafe_allow_html=True) |
|
|
|
st.subheader("🎥 Videos (MP4)") |
|
for mp4 in mp4_files: |
|
with st.expander(os.path.basename(mp4)): |
|
st.video(mp4) |
|
st.markdown(get_download_link(mp4, "mp4"), unsafe_allow_html=True) |
|
|
|
|
|
st.sidebar.subheader("Voice Settings") |
|
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username), key="username_select") |
|
if new_username != st.session_state.username: |
|
asyncio.run(save_chat_entry("System 🌟", f"{st.session_state.username} changed to {new_username}", "en-US-AriaNeural")) |
|
st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username] |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
st.rerun() |
|
|
|
st.sidebar.markdown("### 💬 Chat Dialog") |
|
chat_content = asyncio.run(load_chat()) |
|
with st.sidebar.expander("Chat History"): |
|
numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(chat_content)) |
|
st.code(numbered_content, language="python") |
|
|
|
st.sidebar.subheader("Vote Totals") |
|
chat_votes = load_votes(QUOTE_VOTES_FILE) |
|
image_votes = load_votes(IMAGE_VOTES_FILE) |
|
for item, count in chat_votes.items(): |
|
st.sidebar.write(f"{item}: {count} votes") |
|
for image, count in image_votes.items(): |
|
st.sidebar.write(f"{image}: {count} votes") |
|
|
|
st.sidebar.markdown("### 📂 File History") |
|
for f in all_files[:10]: |
|
st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '📄')} {os.path.basename(f)}") |
|
if st.sidebar.button("⬇️ Zip All", key="zip_all"): |
|
zip_name = create_zip_of_files(md_files, mp3_files, png_files, mp4_files, "latest_query") |
|
if zip_name: |
|
st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True) |
|
|
|
|
|
st.sidebar.subheader("Set Refresh Rate ⏳") |
|
st.markdown(""" |
|
<style> |
|
.timer { |
|
font-size: 24px; |
|
color: #ffcc00; |
|
text-align: center; |
|
animation: pulse 1s infinite; |
|
} |
|
@keyframes pulse { |
|
0% { transform: scale(1); } |
|
50% { transform: scale(1.1); } |
|
100% { transform: scale(1); } |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
refresh_rate = st.sidebar.slider("Refresh Rate (seconds)", min_value=1, max_value=300, value=st.session_state.refresh_rate, step=1) |
|
if refresh_rate != st.session_state.refresh_rate: |
|
st.session_state.refresh_rate = refresh_rate |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
|
|
col1, col2, col3 = st.sidebar.columns(3) |
|
with col1: |
|
if st.button("🐇 Small (1s)"): |
|
st.session_state.refresh_rate = 1 |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
with col2: |
|
if st.button("🐢 Medium (5s)"): |
|
st.session_state.refresh_rate = 5 |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
with col3: |
|
if st.button("🐘 Large (5m)"): |
|
st.session_state.refresh_rate = 300 |
|
st.session_state.timer_start = time.time() |
|
save_username(st.session_state.username) |
|
|
|
timer_placeholder = st.sidebar.empty() |
|
start_time = st.session_state.timer_start |
|
remaining_time = int(st.session_state.refresh_rate - (time.time() - start_time)) |
|
if remaining_time <= 0: |
|
st.session_state.timer_start = time.time() |
|
st.session_state.last_refresh = time.time() |
|
st.rerun() |
|
else: |
|
timer_placeholder.markdown(f"<p class='timer'>⏳ Next refresh in: {remaining_time} seconds</p>", unsafe_allow_html=True) |
|
|
|
|
|
if not st.session_state.server_running and not st.session_state.server_task: |
|
st.session_state.server_task = threading.Thread(target=start_websocket_server, daemon=True) |
|
st.session_state.server_task.start() |
|
|
|
if __name__ == "__main__": |
|
main() |