awacke1's picture
Update app.py
371d2e7 verified
raw
history blame
33.8 kB
import streamlit as st
import asyncio
import websockets
import uuid
from datetime import datetime
import os
import random
import time
import hashlib
from PIL import Image
import glob
import base64
import io
import streamlit.components.v1 as components
import edge_tts
from audio_recorder_streamlit import audio_recorder
import nest_asyncio
import re
from streamlit_paste_button import paste_image_button
import pytz
import shutil
import anthropic
import openai
from PyPDF2 import PdfReader
import threading
import json
import zipfile
from gradio_client import Client
from dotenv import load_dotenv
from streamlit_marquee import streamlit_marquee
from collections import defaultdict, Counter
import pandas as pd
# 🛠️ Patch asyncio for nesting
nest_asyncio.apply()
# 🎨 Page Config
st.set_page_config(
page_title="🚲TalkingAIResearcher🏆",
page_icon="🚲🏆",
layout="wide",
initial_sidebar_state="auto"
)
# 🌟 Static Config
icons = '🤖🧠🔬📝'
Site_Name = '🤖🧠Chat & Quote Node📝🔬'
START_ROOM = "Sector 🌌"
FUN_USERNAMES = {
"CosmicJester 🌌": "en-US-AriaNeural",
"PixelPanda 🐼": "en-US-JennyNeural",
"QuantumQuack 🦆": "en-GB-SoniaNeural",
"StellarSquirrel 🐿️": "en-AU-NatashaNeural",
"GizmoGuru ⚙️": "en-CA-ClaraNeural",
"NebulaNinja 🌠": "en-US-GuyNeural",
"ByteBuster 💾": "en-GB-RyanNeural",
"GalacticGopher 🌍": "en-AU-WilliamNeural",
"RocketRaccoon 🚀": "en-CA-LiamNeural",
"EchoElf 🧝": "en-US-AnaNeural",
"PhantomFox 🦊": "en-US-BrandonNeural",
"WittyWizard 🧙": "en-GB-ThomasNeural",
"LunarLlama 🌙": "en-AU-FreyaNeural",
"SolarSloth ☀️": "en-CA-LindaNeural",
"AstroAlpaca 🦙": "en-US-ChristopherNeural",
"CyberCoyote 🐺": "en-GB-ElliotNeural",
"MysticMoose 🦌": "en-AU-JamesNeural",
"GlitchGnome 🧚": "en-CA-EthanNeural",
"VortexViper 🐍": "en-US-AmberNeural",
"ChronoChimp 🐒": "en-GB-LibbyNeural"
}
EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values()))
FILE_EMOJIS = {"md": "📝", "mp3": "🎵", "png": "🖼️", "mp4": "🎥"}
# 📁 Directories (Media at Root)
for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "audio_cache"]:
os.makedirs(d, exist_ok=True)
CHAT_DIR = "chat_logs"
VOTE_DIR = "vote_logs"
MEDIA_DIR = "."
AUDIO_CACHE_DIR = "audio_cache"
AUDIO_DIR = "audio_logs"
STATE_FILE = "user_state.txt"
CHAT_FILE = os.path.join(CHAT_DIR, "global_chat.md")
QUOTE_VOTES_FILE = os.path.join(VOTE_DIR, "quote_votes.md")
IMAGE_VOTES_FILE = os.path.join(VOTE_DIR, "image_votes.md")
HISTORY_FILE = os.path.join(VOTE_DIR, "vote_history.md")
# 🔑 API Keys
load_dotenv()
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', ""))
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ""))
openai_client = openai.OpenAI(api_key=openai_api_key)
# 🕒 Timestamp Helper
def format_timestamp_prefix(username=""):
central = pytz.timezone('US/Central')
now = datetime.now(central)
return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}"
# 📈 Performance Timer
class PerformanceTimer:
def __init__(self, name):
self.name, self.start = name, None
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, *args):
duration = time.time() - self.start
st.session_state['operation_timings'][self.name] = duration
st.session_state['performance_metrics'][self.name].append(duration)
# 🎛️ Session State Init
def init_session_state():
defaults = {
'server_running': False, 'server_task': None, 'active_connections': {},
'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [],
'message_text': "", 'audio_cache': {}, 'pasted_image_data': None,
'quote_line': None, 'refresh_rate': 5, 'base64_cache': {},
'transcript_history': [], 'last_transcript': "", 'image_hashes': set(),
'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': {
"background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px",
"animationDuration": "20s", "width": "100%", "lineHeight": "35px"
}, 'operation_timings': {}, 'performance_metrics': defaultdict(list),
'enable_audio': True, 'download_link_cache': {}, 'username': None,
'autosend': True, 'autosearch': True, 'last_message': "", 'last_query': "",
'mp3_files': {}, 'timer_start': time.time(), 'quote_index': 0,
'quote_source': "famous", 'last_sent_transcript': "", 'old_val': None
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# 🖌️ Marquee Helpers
def update_marquee_settings_ui():
st.sidebar.markdown("### 🎯 Marquee Settings")
cols = st.sidebar.columns(2)
with cols[0]:
st.session_state['marquee_settings']['background'] = st.color_picker("🎨 Background", "#1E1E1E")
st.session_state['marquee_settings']['color'] = st.color_picker("✍️ Text", "#FFFFFF")
with cols[1]:
st.session_state['marquee_settings']['font-size'] = f"{st.slider('📏 Size', 10, 24, 14)}px"
st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('⏱️ Speed', 1, 20, 20)}s"
def display_marquee(text, settings, key_suffix=""):
truncated = text[:280] + "..." if len(text) > 280 else text
streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}")
st.write("")
# 📝 Text & File Helpers
def clean_text_for_tts(text):
return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text"
def clean_text_for_filename(text):
return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:200]
def get_high_info_terms(text, top_n=10):
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'}
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2]
return [t for t, _ in Counter(filtered).most_common(top_n)]
def generate_filename(prompt, username, file_type="md"):
timestamp = format_timestamp_prefix(username)
hash_val = hashlib.md5(prompt.encode()).hexdigest()[:8]
return f"{timestamp}-{hash_val}.{file_type}"
def create_file(prompt, username, file_type="md"):
filename = generate_filename(prompt, username, file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt)
return filename
def get_download_link(file, file_type="mp3"):
cache_key = f"dl_{file}"
if cache_key not in st.session_state['download_link_cache']:
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
mime_types = {"mp3": "audio/mpeg", "png": "image/png", "mp4": "video/mp4", "md": "text/markdown"}
st.session_state['download_link_cache'][cache_key] = f'<a href="data:{mime_types.get(file_type, "application/octet-stream")};base64,{b64}" download="{os.path.basename(file)}">{FILE_EMOJIS.get(file_type, "Download")} Download {os.path.basename(file)}</a>'
return st.session_state['download_link_cache'][cache_key]
def save_username(username):
try:
with open(STATE_FILE, 'w') as f:
f.write(username)
except Exception as e:
print(f"Failed to save username: {e}")
def load_username():
if os.path.exists(STATE_FILE):
try:
with open(STATE_FILE, 'r') as f:
return f.read().strip()
except Exception as e:
print(f"Failed to load username: {e}")
return None
def concatenate_markdown_files():
md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True)
all_md_content = ""
for md_file in md_files:
with open(md_file, 'r', encoding='utf-8') as f:
all_md_content += f.read() + "\n\n---\n\n"
return all_md_content.strip()
# 🎶 Audio Processing
async def async_edge_tts_generate(text, voice, username, rate=0, pitch=0, file_format="mp3"):
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
if cache_key in st.session_state['audio_cache']:
return st.session_state['audio_cache'][cache_key], 0
start_time = time.time()
text = clean_text_for_tts(text)
if not text or text == "No text":
print(f"Skipping audio generation for empty/invalid text: '{text}'")
return None, 0
filename = f"{format_timestamp_prefix(username)}-{hashlib.md5(text.encode()).hexdigest()[:8]}.{file_format}"
try:
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz")
await communicate.save(filename)
st.session_state['audio_cache'][cache_key] = filename
return filename, time.time() - start_time
except edge_tts.exceptions.NoAudioReceived as e:
print(f"No audio received for text: '{text}' with voice: {voice}. Error: {e}")
return None, 0
except Exception as e:
print(f"Error generating audio for text: '{text}' with voice: {voice}. Error: {e}")
return None, 0
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
st.markdown(get_download_link(file_path), unsafe_allow_html=True)
def load_mp3_viewer():
mp3_files = sorted(glob.glob(f"*.mp3"), key=os.path.getmtime, reverse=True)
for mp3 in mp3_files:
filename = os.path.basename(mp3)
if filename not in st.session_state['mp3_files']:
st.session_state['mp3_files'][filename] = mp3
async def save_chat_entry(username, message, is_markdown=False):
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S")
entry = f"[{timestamp}] {username}: {message}" if not is_markdown else f"[{timestamp}] {username}:\n```markdown\n{message}\n```"
with open(CHAT_FILE, 'a') as f:
f.write(f"{entry}\n")
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
audio_file, _ = await async_edge_tts_generate(message, voice, username)
if audio_file:
with open(HISTORY_FILE, 'a') as f:
f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n")
st.session_state['mp3_files'][os.path.basename(audio_file)] = audio_file
else:
print(f"No audio generated for message: '{message}' by {username}")
await broadcast_message(f"{username}|{message}", "chat")
st.session_state.last_chat_update = time.time()
st.session_state.chat_history.append(entry)
return audio_file
async def load_chat():
if not os.path.exists(CHAT_FILE):
with open(CHAT_FILE, 'a') as f:
f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! 🎤\n")
with open(CHAT_FILE, 'r') as f:
content = f.read().strip()
lines = content.split('\n')
numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(lines) if line.strip())
return numbered_content
async def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
start = time.time()
client = anthropic.Anthropic(api_key=anthropic_key)
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": q}]
)
st.write("Claude's reply 🧠:")
st.markdown(response.content[0].text)
result = response.content[0].text
md_file = create_file(q, result, "System")
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice'], "System")
st.subheader("📝 Main Response Audio")
play_and_download_audio(audio_file)
if useArxiv:
q = q + result
st.write('Running Arxiv RAG with Claude inputs.')
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = gradio_client.predict(
q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md"
)[0]
result = f"🔎 {q}\n\n{refs}"
md_file = create_file(q, result, "System")
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice'], "System")
st.subheader("📝 ArXiv Response Audio")
play_and_download_audio(audio_file)
papers = parse_arxiv_refs(refs)
if papers and useArxivAudio:
await create_paper_audio_files(papers, q)
return result, papers
elapsed = time.time() - start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return result, []
# 🌐 WebSocket Handling
async def websocket_handler(websocket, path):
client_id = str(uuid.uuid4())
room_id = "chat"
if room_id not in st.session_state.active_connections:
st.session_state.active_connections[room_id] = {}
st.session_state.active_connections[room_id][client_id] = websocket
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys())))
chat_content = await load_chat()
if not any(f"Client-{client_id}" in line for line in chat_content.split('\n')):
await save_chat_entry("System 🌟", f"{username} has joined {START_ROOM}!")
try:
async for message in websocket:
if '|' in message:
username, content = message.split('|', 1)
await save_chat_entry(username, content)
else:
await websocket.send("ERROR|Message format: username|content")
except websockets.ConnectionClosed:
await save_chat_entry("System 🌟", f"{username} has left {START_ROOM}!")
finally:
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
async def broadcast_message(message, room_id):
if room_id in st.session_state.active_connections:
disconnected = []
for client_id, ws in st.session_state.active_connections[room_id].items():
try:
await ws.send(message)
except websockets.ConnectionClosed:
disconnected.append(client_id)
for client_id in disconnected:
if client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
async def run_websocket_server():
if not st.session_state.server_running:
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765)
st.session_state.server_running = True
await server.wait_closed()
# 📚 PDF to Audio
class AudioProcessor:
def __init__(self):
self.cache_dir = AUDIO_CACHE_DIR
os.makedirs(self.cache_dir, exist_ok=True)
self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {}
def _save_metadata(self):
with open(f"{self.cache_dir}/metadata.json", 'w') as f:
json.dump(self.metadata, f)
async def create_audio(self, text, voice='en-US-AriaNeural'):
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest()
cache_path = f"{self.cache_dir}/{cache_key}.mp3"
if cache_key in self.metadata and os.path.exists(cache_path):
return cache_path
text = clean_text_for_tts(text)
if not text:
return None
communicate = edge_tts.Communicate(text, voice)
await communicate.save(cache_path)
self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice}
self._save_metadata()
return cache_path
def process_pdf(pdf_file, max_pages, voice, audio_processor):
reader = PdfReader(pdf_file)
total_pages = min(len(reader.pages), max_pages)
texts, audios = [], {}
async def process_page(i, text):
audio_path = await audio_processor.create_audio(text, voice)
if audio_path:
audios[i] = audio_path
for i in range(total_pages):
text = reader.pages[i].extract_text()
texts.append(text)
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start()
return texts, audios, total_pages
# 🔍 ArXiv & AI Lookup
def parse_arxiv_refs(ref_text):
if not ref_text:
return []
papers = []
current = {}
for line in ref_text.split('\n'):
if line.count('|') == 2:
if current:
papers.append(current)
date, title, *_ = line.strip('* ').split('|')
url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}"
current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': ''}
elif current:
if not current['authors']:
current['authors'] = line.strip('* ')
else:
current['summary'] += ' ' + line.strip() if current['summary'] else line.strip()
if current:
papers.append(current)
return papers[:20]
def generate_5min_feature_markdown(paper):
title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url']
pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "")
wct, sw = len(title.split()), len(summary.split())
terms = get_high_info_terms(summary, 15)
rouge = round((len(terms) / max(sw, 1)) * 100, 2)
mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```"
return f"""
## 📄 {title}
**Authors:** {authors} | **Date:** {date} | **Words:** Title: {wct}, Summary: {sw}
**Links:** [Abstract]({url}) | [PDF]({pdf_url})
**Terms:** {', '.join(terms)} | **ROUGE:** {rouge}%
### 🎤 TTF Read Aloud
- **Title:** {title} | **Terms:** {', '.join(terms)} | **ROUGE:** {rouge}%
#### Concepts Graph
{mermaid}
---
"""
def create_detailed_paper_md(papers):
return "# Detailed Summary\n" + "\n".join(generate_5min_feature_markdown(p) for p in papers)
async def create_paper_audio_files(papers, query):
for p in papers:
audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}")
p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice'], p['authors'])
if p['full_audio']:
p['download_base64'] = get_download_link(p['full_audio'])
def save_vote(file, item, user_hash):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
entry = f"[{timestamp}] {user_hash} voted for {item}"
try:
with open(file, 'a') as f:
f.write(f"{entry}\n")
with open(HISTORY_FILE, 'a') as f:
f.write(f"- {timestamp} - User {user_hash} voted for {item}\n")
return True
except Exception as e:
print(f"Vote save flop: {e}")
return False
def load_votes(file):
if not os.path.exists(file):
with open(file, 'w') as f:
f.write("# Vote Tally\n\nNo votes yet - get clicking! 🖱️\n")
try:
with open(file, 'r') as f:
lines = f.read().strip().split('\n')
votes = {}
for line in lines[2:]: # Skip header
if line.strip() and 'voted for' in line:
item = line.split('voted for ')[1]
votes[item] = votes.get(item, 0) + 1
return votes
except Exception as e:
print(f"Vote load oopsie: {e}")
return {}
def generate_user_hash():
if 'user_hash' not in st.session_state:
session_id = str(random.getrandbits(128))
hash_object = hashlib.md5(session_id.encode())
st.session_state['user_hash'] = hash_object.hexdigest()[:8]
return st.session_state['user_hash']
async def save_pasted_image(image, username):
img_hash = hashlib.md5(image.tobytes()).hexdigest()[:8]
if img_hash in st.session_state.image_hashes:
return None
timestamp = format_timestamp_prefix(username)
filename = f"{timestamp}-{img_hash}.png"
filepath = filename
image.save(filepath, "PNG")
st.session_state.image_hashes.add(img_hash)
return filepath
# 📦 Zip Files
def create_zip_of_files(md_files, mp3_files, png_files, mp4_files, query):
all_files = md_files + mp3_files + png_files + mp4_files
if not all_files:
return None
terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in all_files] + [query]), 5)
zip_name = f"{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip"
with zipfile.ZipFile(zip_name, 'w') as z:
[z.write(f) for f in all_files]
return zip_name
# 🎮 Main Interface
def main():
init_session_state()
load_mp3_viewer()
saved_username = load_username()
if saved_username and saved_username in FUN_USERNAMES:
st.session_state.username = saved_username
if not st.session_state.username:
available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in asyncio.run(load_chat()).split('\n'))]
st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys()))
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username]
asyncio.run(save_chat_entry("System 🌟", f"{st.session_state.username} has joined {START_ROOM}!"))
save_username(st.session_state.username)
st.title(f"{Site_Name} for {st.session_state.username}")
update_marquee_settings_ui()
display_marquee(f"🚀 Welcome to {START_ROOM} | 🤖 {st.session_state.username}", st.session_state['marquee_settings'], "welcome")
# Speech Component at Top Level
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello from MyComponent")
if val:
val_stripped = val.replace('\\n', ' ')
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100, key="speech_input")
run_option = st.selectbox("Model:", ["Chat", "Arxiv"], key="model_select")
col1, col2 = st.columns(2)
with col1:
st.checkbox("⚙ AutoRun", value=True, key="autorun") # Let Streamlit manage autorun state
with col2:
full_audio = st.checkbox("📚 FullAudio", value=False, key="full_audio")
input_changed = (val != st.session_state.old_val)
if st.session_state.autorun and input_changed:
st.session_state.old_val = val
st.session_state.last_query = edited_input
if run_option == "Chat":
asyncio.run(save_chat_entry(st.session_state.username, edited_input, True))
elif run_option == "Arxiv":
asyncio.run(perform_ai_lookup(edited_input, useArxiv=True, useArxivAudio=full_audio))
elif st.button("▶ Run", key="run_button"):
st.session_state.old_val = val
st.session_state.last_query = edited_input
if run_option == "Chat":
asyncio.run(save_chat_entry(st.session_state.username, edited_input, True))
elif run_option == "Arxiv":
asyncio.run(perform_ai_lookup(edited_input, useArxiv=True, useArxivAudio=full_audio))
tab_main = st.radio("Action:", ["🎤 Chat & Voice", "📸 Media", "🔍 ArXiv", "📚 PDF to Audio"], horizontal=True, key="tab_main")
useArxiv = st.checkbox("Search ArXiv", True, key="use_arxiv")
useArxivAudio = st.checkbox("ArXiv Audio", False, key="use_arxiv_audio")
# Use st.checkbox without reassigning to st.session_state.autosend
st.checkbox("Autosend Chat", value=True, key="autosend")
st.session_state.autosearch = st.checkbox("Autosearch ArXiv", value=True, key="autosearch")
# 🎤 Chat & Voice
if tab_main == "🎤 Chat & Voice":
st.subheader(f"{START_ROOM} Chat 💬")
chat_content = asyncio.run(load_chat())
chat_container = st.container()
with chat_container:
lines = chat_content.split('\n')
for i, line in enumerate(lines):
if line.strip():
col1, col2 = st.columns([5, 1])
with col1:
st.markdown(line)
for mp3_name, mp3_path in st.session_state['mp3_files'].items():
if st.session_state.username in mp3_name and any(word in mp3_name for word in line.split()):
st.audio(mp3_path)
break
with col2:
if st.button(f"👍", key=f"chat_vote_{i}"):
user_hash = generate_user_hash()
save_vote(QUOTE_VOTES_FILE, line, user_hash)
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
message = st.text_input(f"Message as {st.session_state.username}", key="message_input")
paste_result = paste_image_button("📋 Paste Image or Text", key="paste_button_msg")
if paste_result.image_data is not None:
if isinstance(paste_result.image_data, str):
st.session_state.message_text = paste_result.image_data
message = st.text_input(f"Message as {st.session_state.username}", key="message_input_paste", value=st.session_state.message_text)
else:
st.image(paste_result.image_data, caption="Pasted Image")
filename = asyncio.run(save_pasted_image(paste_result.image_data, st.session_state.username))
if filename:
st.session_state.pasted_image_data = filename
if (message and message != st.session_state.last_message) or st.session_state.pasted_image_data:
st.session_state.last_message = message
if st.session_state.autosend or st.button("Send 🚀", key="send_button"): # Use st.session_state.autosend directly
if message.strip():
asyncio.run(save_chat_entry(st.session_state.username, message, True))
if st.session_state.pasted_image_data:
asyncio.run(save_chat_entry(st.session_state.username, f"Pasted image: {st.session_state.pasted_image_data}"))
st.session_state.pasted_image_data = None
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
# 📸 Media
elif tab_main == "📸 Media":
st.header("📸 Media Gallery")
all_files = sorted(glob.glob("*.md") + glob.glob("*.mp3") + glob.glob("*.png") + glob.glob("*.mp4"), key=os.path.getmtime, reverse=True)
md_files = [f for f in all_files if f.endswith('.md')]
mp3_files = [f for f in all_files if f.endswith('.mp3')]
png_files = [f for f in all_files if f.endswith('.png')]
mp4_files = [f for f in all_files if f.endswith('.mp4')]
st.subheader("All Submitted Text")
all_md_content = concatenate_markdown_files()
st.markdown(all_md_content)
st.subheader("🎵 Audio (MP3)")
for mp3 in mp3_files:
with st.expander(os.path.basename(mp3)):
st.audio(mp3)
st.markdown(get_download_link(mp3, "mp3"), unsafe_allow_html=True)
st.subheader("🖼️ Images (PNG)")
for png in png_files:
with st.expander(os.path.basename(png)):
st.image(png, use_container_width=True)
st.markdown(get_download_link(png, "png"), unsafe_allow_html=True)
st.subheader("🎥 Videos (MP4)")
for mp4 in mp4_files:
with st.expander(os.path.basename(mp4)):
st.video(mp4)
st.markdown(get_download_link(mp4, "mp4"), unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload Media", type=['png', 'mp4', 'mp3'], key="media_upload")
if uploaded_file:
filename = f"{format_timestamp_prefix(st.session_state.username)}-{hashlib.md5(uploaded_file.getbuffer()).hexdigest()[:8]}.{uploaded_file.name.split('.')[-1]}"
with open(filename, 'wb') as f:
f.write(uploaded_file.getbuffer())
asyncio.run(save_chat_entry(st.session_state.username, f"Uploaded: {filename}"))
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
# 🔍 ArXiv
elif tab_main == "🔍 ArXiv":
st.subheader("🔍 Query ArXiv")
q = st.text_input("🔍 Query:", key="arxiv_query")
if q and q != st.session_state.last_query:
st.session_state.last_query = q
if st.session_state.autosearch or st.button("🔍 Run", key="arxiv_run"):
result, papers = asyncio.run(perform_ai_lookup(q, useArxiv=useArxiv, useArxivAudio=useArxivAudio))
for i, p in enumerate(papers, 1):
with st.expander(f"{i}. 📄 {p['title']}"):
st.markdown(f"**{p['date']} | {p['title']}** — [Link]({p['url']})")
st.markdown(generate_5min_feature_markdown(p))
if p.get('full_audio'):
play_and_download_audio(p['full_audio'])
# 📚 PDF to Audio
elif tab_main == "📚 PDF to Audio":
audio_processor = AudioProcessor()
pdf_file = st.file_uploader("Choose PDF", "pdf", key="pdf_upload")
max_pages = st.slider('Pages', 1, 100, 10, key="pdf_pages")
if pdf_file:
with st.spinner('Processing...'):
texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor)
for i, text in enumerate(texts):
with st.expander(f"Page {i+1}"):
st.markdown(text)
while i not in audios:
time.sleep(0.1)
if audios.get(i):
st.audio(audios[i])
st.markdown(get_download_link(audios[i], "mp3"), unsafe_allow_html=True)
asyncio.run(save_chat_entry(st.session_state.username, f"PDF Page {i+1} converted to audio: {audios[i]}"))
# 🗂️ Sidebar with Dialog and Audio
st.sidebar.subheader("Voice Settings")
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username), key="username_select")
if new_username != st.session_state.username:
asyncio.run(save_chat_entry("System 🌟", f"{st.session_state.username} changed to {new_username}"))
st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username]
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
st.sidebar.markdown("### 💬 Chat Dialog & Media")
chat_content = asyncio.run(load_chat())
lines = chat_content.split('\n')
all_files = sorted(glob.glob("*.md") + glob.glob("*.mp3") + glob.glob("*.png") + glob.glob("*.mp4"), key=os.path.getmtime, reverse=True)
for line in lines[-10:]:
if line.strip():
st.sidebar.markdown(f"**{line}**")
for f in all_files:
f_name = os.path.basename(f)
if st.session_state.username in f_name and any(word in f_name for word in line.split()):
if f.endswith('.mp3'):
st.sidebar.audio(f)
st.sidebar.markdown(get_download_link(f, "mp3"), unsafe_allow_html=True)
elif f.endswith('.png'):
st.sidebar.image(f, use_container_width=True)
st.sidebar.markdown(get_download_link(f, "png"), unsafe_allow_html=True)
elif f.endswith('.mp4'):
st.sidebar.video(f)
st.sidebar.markdown(get_download_link(f, "mp4"), unsafe_allow_html=True)
break
st.sidebar.subheader("Vote Totals")
chat_votes = load_votes(QUOTE_VOTES_FILE)
image_votes = load_votes(IMAGE_VOTES_FILE)
for item, count in chat_votes.items():
st.sidebar.write(f"{item}: {count} votes")
for image, count in image_votes.items():
st.sidebar.write(f"{image}: {count} votes")
md_files = [f for f in all_files if f.endswith('.md')]
mp3_files = [f for f in all_files if f.endswith('.mp3')]
png_files = [f for f in all_files if f.endswith('.png')]
mp4_files = [f for f in all_files if f.endswith('.mp4')]
st.sidebar.markdown("### 📂 File History")
for f in all_files[:10]:
st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '📄')} {os.path.basename(f)}")
if st.sidebar.button("⬇️ Zip All", key="zip_all"):
zip_name = create_zip_of_files(md_files, mp3_files, png_files, mp4_files, "latest_query")
if zip_name:
st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True)
if not st.session_state.server_task:
st.session_state.server_task = asyncio.create_task(run_websocket_server())
if __name__ == "__main__":
main()