|
|
|
import streamlit as st |
|
import asyncio |
|
import websockets |
|
import uuid |
|
import argparse |
|
import os |
|
import random |
|
import time |
|
import hashlib |
|
from PIL import Image |
|
import glob |
|
import base64 |
|
import io |
|
import streamlit.components.v1 as components |
|
import edge_tts |
|
from audio_recorder_streamlit import audio_recorder |
|
import nest_asyncio |
|
import re |
|
import pytz |
|
import shutil |
|
import anthropic |
|
import openai |
|
from PyPDF2 import PdfReader |
|
import threading |
|
import json |
|
import zipfile |
|
from gradio_client import Client |
|
from dotenv import load_dotenv |
|
from streamlit_marquee import streamlit_marquee |
|
from datetime import datetime |
|
from collections import defaultdict, Counter |
|
import pandas as pd |
|
|
|
|
|
nest_asyncio.apply() |
|
|
|
|
|
st.set_page_config( |
|
page_title="🚲TalkingAIResearcher🏆", |
|
page_icon="🚲🏆", |
|
layout="wide", |
|
initial_sidebar_state="auto" |
|
) |
|
|
|
|
|
icons = '🤖🧠🔬📝' |
|
START_ROOM = "Sector 🌌" |
|
FUN_USERNAMES = { |
|
"CosmicJester 🌌": "en-US-AriaNeural", |
|
"PixelPanda 🐼": "en-US-JennyNeural", |
|
"QuantumQuack 🦆": "en-GB-SoniaNeural", |
|
"StellarSquirrel 🐿️": "en-AU-NatashaNeural", |
|
"GizmoGuru ⚙️": "en-CA-ClaraNeural", |
|
"NebulaNinja 🌠": "en-US-GuyNeural", |
|
"ByteBuster 💾": "en-GB-RyanNeural", |
|
"GalacticGopher 🌍": "en-AU-WilliamNeural", |
|
"RocketRaccoon 🚀": "en-CA-LiamNeural", |
|
"EchoElf 🧝": "en-US-AnaNeural", |
|
} |
|
EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values())) |
|
FILE_EMOJIS = {"md": "📝", "mp3": "🎵", "wav": "🔊"} |
|
|
|
|
|
for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "media_files", "audio_cache"]: |
|
os.makedirs(d, exist_ok=True) |
|
|
|
CHAT_FILE = "chat_logs/global_chat.md" |
|
HISTORY_FILE = "history_logs/chat_history.md" |
|
MEDIA_DIR = "media_files" |
|
AUDIO_CACHE_DIR = "audio_cache" |
|
|
|
|
|
load_dotenv() |
|
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', "")) |
|
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', "")) |
|
openai_client = openai.OpenAI(api_key=openai_api_key) |
|
|
|
|
|
def format_timestamp_prefix(username=""): |
|
central = pytz.timezone('US/Central') |
|
now = datetime.now(central) |
|
return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}" |
|
|
|
|
|
class PerformanceTimer: |
|
def __init__(self, name): self.name, self.start = name, None |
|
def __enter__(self): self.start = time.time(); return self |
|
def __exit__(self, *args): |
|
duration = time.time() - self.start |
|
st.session_state['operation_timings'][self.name] = duration |
|
st.session_state['performance_metrics'][self.name].append(duration) |
|
|
|
|
|
def init_session_state(): |
|
defaults = { |
|
'server_running': False, 'server_task': None, 'active_connections': {}, |
|
'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [], |
|
'message_text': "", 'audio_cache': {}, 'pasted_image_data': None, |
|
'quote_line': None, 'refresh_rate': 5, 'base64_cache': {}, |
|
'transcript_history': [], 'last_transcript': "", 'image_hashes': set(), |
|
'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': { |
|
"background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px", |
|
"animationDuration": "20s", "width": "100%", "lineHeight": "35px" |
|
}, 'operation_timings': {}, 'performance_metrics': defaultdict(list), |
|
'enable_audio': True, 'download_link_cache': {}, 'username': None |
|
} |
|
for k, v in defaults.items(): |
|
if k not in st.session_state: st.session_state[k] = v |
|
|
|
|
|
def update_marquee_settings_ui(): |
|
|
|
st.sidebar.markdown("### 🎯 Marquee Settings") |
|
cols = st.sidebar.columns(2) |
|
with cols[0]: |
|
st.session_state['marquee_settings']['background'] = st.color_picker("🎨 Background", "#1E1E1E") |
|
st.session_state['marquee_settings']['color'] = st.color_picker("✍️ Text", "#FFFFFF") |
|
with cols[1]: |
|
st.session_state['marquee_settings']['font-size'] = f"{st.slider('📏 Size', 10, 24, 14)}px" |
|
st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('⏱️ Speed', 1, 20, 20)}s" |
|
|
|
def display_marquee(text, settings, key_suffix=""): |
|
|
|
truncated = text[:280] + "..." if len(text) > 280 else text |
|
streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}") |
|
st.write("") |
|
|
|
|
|
def clean_text_for_tts(text): return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text" |
|
def clean_text_for_filename(text): return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:200] |
|
def get_high_info_terms(text, top_n=10): |
|
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'} |
|
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) |
|
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] |
|
filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2] |
|
return [t for t, _ in Counter(filtered).most_common(top_n)] |
|
|
|
def generate_filename(prompt, response, file_type="md"): |
|
|
|
prefix = format_timestamp_prefix() |
|
terms = get_high_info_terms(prompt + " " + response, 5) |
|
snippet = clean_text_for_filename(prompt[:40] + " " + response[:40]) |
|
wct, sw = len(prompt.split()), len(response.split()) |
|
dur = round((wct + sw) / 2.5) |
|
base = '_'.join(list(dict.fromkeys(terms + [snippet])))[:200 - len(prefix) - len(f"_wct{wct}_sw{sw}_dur{dur}.{file_type}")] |
|
return f"{prefix}{base}_wct{wct}_sw{sw}_dur{dur}.{file_type}" |
|
|
|
def create_file(prompt, response, file_type="md"): |
|
|
|
filename = generate_filename(prompt, response, file_type) |
|
with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) |
|
return filename |
|
|
|
def get_download_link(file, file_type="mp3"): |
|
|
|
cache_key = f"dl_{file}" |
|
if cache_key not in st.session_state['download_link_cache']: |
|
with open(file, "rb") as f: |
|
b64 = base64.b64encode(f.read()).decode() |
|
st.session_state['download_link_cache'][cache_key] = f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">{FILE_EMOJIS.get(file_type, "Download")} Download {os.path.basename(file)}</a>' |
|
return st.session_state['download_link_cache'][cache_key] |
|
|
|
|
|
async def async_edge_tts_generate(text, voice, rate=0, pitch=0, file_format="mp3"): |
|
|
|
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}" |
|
if cache_key in st.session_state['audio_cache']: return st.session_state['audio_cache'][cache_key], 0 |
|
with PerformanceTimer("tts_generation"): |
|
text = clean_text_for_tts(text) |
|
if not text: return None, 0 |
|
filename = f"audio_{format_timestamp_prefix()}_{random.randint(1000, 9999)}.{file_format}" |
|
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz") |
|
await communicate.save(filename) |
|
st.session_state['audio_cache'][cache_key] = filename |
|
return filename, time.time() - st.session_state['operation_timings']['tts_generation'] |
|
|
|
def play_and_download_audio(file_path): |
|
|
|
if file_path and os.path.exists(file_path): |
|
st.audio(file_path) |
|
st.markdown(get_download_link(file_path), unsafe_allow_html=True) |
|
|
|
async def save_chat_entry(username, message, is_markdown=False): |
|
|
|
central = pytz.timezone('US/Central') |
|
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S") |
|
entry = f"[{timestamp}] {username}: {message}" if not is_markdown else f"[{timestamp}] {username}:\n```markdown\n{message}\n```" |
|
with open(CHAT_FILE, 'a') as f: f.write(f"{entry}\n") |
|
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural") |
|
audio_file, _ = await async_edge_tts_generate(clean_text_for_tts(message), voice) |
|
if audio_file: |
|
with open(HISTORY_FILE, 'a') as f: f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n") |
|
await broadcast_message(f"{username}|{message}", "chat") |
|
st.session_state.last_chat_update = time.time() |
|
return audio_file |
|
|
|
async def load_chat(): |
|
|
|
if not os.path.exists(CHAT_FILE): |
|
with open(CHAT_FILE, 'a') as f: f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! 🎤\n") |
|
with open(CHAT_FILE, 'r') as f: return f.read() |
|
|
|
|
|
async def websocket_handler(websocket, path): |
|
|
|
client_id = str(uuid.uuid4()) |
|
room_id = "chat" |
|
st.session_state.active_connections.setdefault(room_id, {})[client_id] = websocket |
|
chat_content = await load_chat() |
|
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys()))) |
|
if not any(f"Client-{client_id}" in line for line in chat_content.split('\n')): |
|
await save_chat_entry(f"Client-{client_id}", f"{username} has joined {START_ROOM}!") |
|
try: |
|
async for message in websocket: |
|
username, content = message.split('|', 1) |
|
await save_chat_entry(username, content) |
|
finally: |
|
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]: |
|
del st.session_state.active_connections[room_id][client_id] |
|
|
|
async def broadcast_message(message, room_id): |
|
|
|
if room_id in st.session_state.active_connections: |
|
disconnected = [] |
|
for client_id, ws in st.session_state.active_connections[room_id].items(): |
|
try: await ws.send(message) |
|
except websockets.ConnectionClosed: disconnected.append(client_id) |
|
for client_id in disconnected: del st.session_state.active_connections[room_id][client_id] |
|
|
|
async def run_websocket_server(): |
|
|
|
if not st.session_state.server_running: |
|
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765) |
|
st.session_state.server_running = True |
|
await server.wait_closed() |
|
|
|
|
|
class AudioProcessor: |
|
def __init__(self): |
|
self.cache_dir = AUDIO_CACHE_DIR |
|
os.makedirs(self.cache_dir, exist_ok=True) |
|
self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {} |
|
|
|
def _save_metadata(self): |
|
with open(f"{self.cache_dir}/metadata.json", 'w') as f: json.dump(self.metadata, f) |
|
|
|
async def create_audio(self, text, voice='en-US-AriaNeural'): |
|
|
|
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest() |
|
cache_path = f"{self.cache_dir}/{cache_key}.mp3" |
|
if cache_key in self.metadata and os.path.exists(cache_path): |
|
return open(cache_path, 'rb').read() |
|
text = clean_text_for_tts(text) |
|
if not text: return None |
|
communicate = edge_tts.Communicate(text, voice) |
|
await communicate.save(cache_path) |
|
self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice} |
|
self._save_metadata() |
|
return open(cache_path, 'rb').read() |
|
|
|
def process_pdf(pdf_file, max_pages, voice, audio_processor): |
|
|
|
reader = PdfReader(pdf_file) |
|
total_pages = min(len(reader.pages), max_pages) |
|
texts, audios = [], {} |
|
async def process_page(i, text): audios[i] = await audio_processor.create_audio(text, voice) |
|
for i in range(total_pages): |
|
text = reader.pages[i].extract_text() |
|
texts.append(text) |
|
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start() |
|
return texts, audios, total_pages |
|
|
|
|
|
def parse_arxiv_refs(ref_text): |
|
|
|
if not ref_text: return [] |
|
papers = [] |
|
current = {} |
|
for line in ref_text.split('\n'): |
|
if line.count('|') == 2: |
|
if current: papers.append(current) |
|
date, title, *_ = line.strip('* ').split('|') |
|
url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}" |
|
current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': ''} |
|
elif current: |
|
if not current['authors']: current['authors'] = line.strip('* ') |
|
else: current['summary'] += ' ' + line.strip() if current['summary'] else line.strip() |
|
if current: papers.append(current) |
|
return papers[:20] |
|
|
|
def generate_5min_feature_markdown(paper): |
|
|
|
title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url'] |
|
pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "") |
|
wct, sw = len(title.split()), len(summary.split()) |
|
terms = get_high_info_terms(summary, 15) |
|
rouge = round((len(terms) / max(sw, 1)) * 100, 2) |
|
mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```" |
|
return f""" |
|
## 📄 {title} |
|
**Authors:** {authors} | **Date:** {date} | **Words:** Title: {wct}, Summary: {sw} |
|
**Links:** [Abstract]({url}) | [PDF]({pdf_url}) |
|
**Terms:** {', '.join(terms)} | **ROUGE:** {rouge}% |
|
### 🎤 TTF Read Aloud |
|
- **Title:** {title} | **Terms:** {', '.join(terms)} | **ROUGE:** {rouge}% |
|
#### Concepts Graph |
|
{mermaid} |
|
--- |
|
""" |
|
|
|
def create_detailed_paper_md(papers): return "# Detailed Summary\n" + "\n".join(generate_5min_feature_markdown(p) for p in papers) |
|
|
|
async def create_paper_audio_files(papers, query): |
|
|
|
for p in papers: |
|
audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}") |
|
p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice']) |
|
if p['full_audio']: p['download_base64'] = get_download_link(p['full_audio']) |
|
|
|
async def perform_ai_lookup(q, useArxiv=True, useArxivAudio=False): |
|
|
|
client = anthropic.Anthropic(api_key=anthropic_key) |
|
response = client.messages.create(model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role": "user", "content": q}]) |
|
result = response.content[0].text |
|
st.markdown("### Claude's Reply 🧠\n" + result) |
|
md_file = create_file(q, result) |
|
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice']) |
|
play_and_download_audio(audio_file) |
|
|
|
if useArxiv: |
|
q += result |
|
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
refs = gradio_client.predict(q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] |
|
result = f"🔎 {q}\n\n{refs}" |
|
md_file, audio_file = create_file(q, result), (await async_edge_tts_generate(result, st.session_state['tts_voice']))[0] |
|
play_and_download_audio(audio_file) |
|
papers = parse_arxiv_refs(refs) |
|
if papers and useArxivAudio: await create_paper_audio_files(papers, q) |
|
return result, papers |
|
return result, [] |
|
|
|
|
|
def create_zip_of_files(md_files, mp3_files, query): |
|
|
|
all_files = md_files + mp3_files |
|
if not all_files: return None |
|
terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in all_files] + [query]), 5) |
|
zip_name = f"{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip" |
|
with zipfile.ZipFile(zip_name, 'w') as z: [z.write(f) for f in all_files] |
|
return zip_name |
|
|
|
|
|
async def async_interface(): |
|
init_session_state() |
|
if not st.session_state.username: |
|
available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in (await load_chat()).split('\n'))] |
|
st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys())) |
|
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username] |
|
|
|
st.title(f"🤖🧠MMO Chat & Research for {st.session_state.username}📝🔬") |
|
update_marquee_settings_ui() |
|
display_marquee(f"🚀 Welcome to {START_ROOM} | 🤖 {st.session_state.username}", st.session_state['marquee_settings'], "welcome") |
|
|
|
if not st.session_state.server_task: |
|
st.session_state.server_task = asyncio.create_task(run_websocket_server()) |
|
|
|
tab_main = st.radio("Action:", ["🎤 Chat & Voice", "📸 Media", "🔍 ArXiv", "📚 PDF to Audio"], horizontal=True) |
|
useArxiv, useArxivAudio = st.checkbox("Search ArXiv", True), st.checkbox("ArXiv Audio", False) |
|
|
|
|
|
if tab_main == "🎤 Chat & Voice": |
|
st.subheader(f"{START_ROOM} Chat 💬") |
|
chat_content = await load_chat() |
|
for i, line in enumerate(chat_content.split('\n')): |
|
if line.strip() and ': ' in line: |
|
st.markdown(line) |
|
if st.button("📢 Speak", key=f"speak_{i}"): |
|
audio_file, _ = await async_edge_tts_generate(line.split(': ', 1)[1], st.session_state['tts_voice']) |
|
play_and_download_audio(audio_file) |
|
|
|
message = st.text_input(f"Message as {st.session_state.username}", key="message_input") |
|
if st.button("Send 🚀") and message.strip(): |
|
await save_chat_entry(st.session_state.username, message, True) |
|
st.rerun() |
|
|
|
st.subheader("🎤 Speech-to-Chat") |
|
speech_component = components.declare_component("speech_component", path="mycomponent") |
|
transcript_data = speech_component(default_value=st.session_state.get('last_transcript', '')) |
|
if transcript_data and 'value' in transcript_data: |
|
transcript = transcript_data['value'].strip() |
|
st.write(f"🎙️ You said: {transcript}") |
|
if st.button("Send to Chat"): |
|
await save_chat_entry(st.session_state.username, transcript, True) |
|
st.session_state.last_transcript = transcript |
|
st.rerun() |
|
|
|
|
|
elif tab_main == "📸 Media": |
|
st.header("📸 Media Gallery") |
|
tabs = st.tabs(["🎵 Audio", "🖼 Images", "🎥 Video"]) |
|
with tabs[0]: |
|
for a in glob.glob(f"{MEDIA_DIR}/*.mp3"): |
|
with st.expander(os.path.basename(a)): play_and_download_audio(a) |
|
with tabs[1]: |
|
imgs = glob.glob(f"{MEDIA_DIR}/*.png") + glob.glob(f"{MEDIA_DIR}/*.jpg") |
|
if imgs: |
|
cols = st.columns(3) |
|
for i, f in enumerate(imgs): cols[i % 3].image(f, use_container_width=True) |
|
with tabs[2]: |
|
for v in glob.glob(f"{MEDIA_DIR}/*.mp4"): |
|
with st.expander(os.path.basename(v)): st.video(v) |
|
|
|
uploaded_file = st.file_uploader("Upload Media", type=['png', 'jpg', 'mp4', 'mp3']) |
|
if uploaded_file: |
|
filename = f"{format_timestamp_prefix(st.session_state.username)}-{hashlib.md5(uploaded_file.getbuffer()).hexdigest()[:8]}.{uploaded_file.name.split('.')[-1]}" |
|
with open(f"{MEDIA_DIR}/{filename}", 'wb') as f: f.write(uploaded_file.getbuffer()) |
|
await save_chat_entry(st.session_state.username, f"Uploaded: {filename}") |
|
st.rerun() |
|
|
|
|
|
elif tab_main == "🔍 ArXiv": |
|
q = st.text_input("🔍 Query:") |
|
if q and st.button("🔍 Run"): |
|
result, papers = await perform_ai_lookup(q, useArxiv, useArxivAudio) |
|
for i, p in enumerate(papers, 1): |
|
with st.expander(f"{i}. 📄 {p['title']}"): |
|
st.markdown(f"**{p['date']} | {p['title']}** — [Link]({p['url']})") |
|
st.markdown(generate_5min_feature_markdown(p)) |
|
if p.get('full_audio'): play_and_download_audio(p['full_audio']) |
|
|
|
|
|
elif tab_main == "📚 PDF to Audio": |
|
audio_processor = AudioProcessor() |
|
pdf_file = st.file_uploader("Choose PDF", "pdf") |
|
max_pages = st.slider('Pages', 1, 100, 10) |
|
if pdf_file: |
|
with st.spinner('Processing...'): |
|
texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor) |
|
for i, text in enumerate(texts): |
|
with st.expander(f"Page {i+1}"): |
|
st.markdown(text) |
|
while i not in audios: time.sleep(0.1) |
|
if audios[i]: |
|
st.audio(audios[i], format='audio/mp3') |
|
st.markdown(get_download_link(io.BytesIO(audios[i]), "mp3"), unsafe_allow_html=True) |
|
|
|
|
|
st.sidebar.subheader("Voice Settings") |
|
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username)) |
|
if new_username != st.session_state.username: |
|
await save_chat_entry("System 🌟", f"{st.session_state.username} changed to {new_username}") |
|
st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username] |
|
st.rerun() |
|
|
|
md_files, mp3_files = glob.glob("*.md"), glob.glob("*.mp3") |
|
st.sidebar.markdown("### 📂 File History") |
|
for f in sorted(md_files + mp3_files, key=os.path.getmtime, reverse=True)[:10]: |
|
st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '📄')} {os.path.basename(f)}") |
|
if st.sidebar.button("⬇️ Zip All"): |
|
zip_name = create_zip_of_files(md_files, mp3_files, "latest_query") |
|
if zip_name: st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True) |
|
|
|
def main(): |
|
|
|
asyncio.run(async_interface()) |
|
|
|
if __name__ == "__main__": |
|
main() |