SectorMultiplayerChatServer / backup20.app.py
awacke1's picture
Rename app.py to backup20.app.py
e379433 verified
import streamlit as st
import asyncio
import websockets
import uuid
from datetime import datetime
import os
import random
import time
import hashlib
from PIL import Image
import glob
import base64
import io
import streamlit.components.v1 as components
import edge_tts
from audio_recorder_streamlit import audio_recorder
import nest_asyncio
import re
import pytz
import shutil
import anthropic
import openai
from PyPDF2 import PdfReader
import threading
import json
import zipfile
from gradio_client import Client
from dotenv import load_dotenv
from streamlit_marquee import streamlit_marquee
from collections import defaultdict, Counter
import pandas as pd
# 🛠️ Patch asyncio for nesting
nest_asyncio.apply()
# 🎨 Page Config
st.set_page_config(
page_title="🚲TalkingAIResearcher🏆",
page_icon="🚲🏆",
layout="wide",
initial_sidebar_state="auto"
)
# 🌟 Static Config
icons = '🤖🧠🔬📝'
Site_Name = '🤖🧠Chat & Quote Node📝🔬'
START_ROOM = "Sector 🌌"
FUN_USERNAMES = {
"CosmicJester 🌌": "en-US-AriaNeural",
"PixelPanda 🐼": "en-US-JennyNeural",
"QuantumQuack 🦆": "en-GB-SoniaNeural",
"StellarSquirrel 🐿️": "en-AU-NatashaNeural",
"GizmoGuru ⚙️": "en-CA-ClaraNeural",
"NebulaNinja 🌠": "en-US-GuyNeural",
"ByteBuster 💾": "en-GB-RyanNeural",
"GalacticGopher 🌍": "en-AU-WilliamNeural",
"RocketRaccoon 🚀": "en-CA-LiamNeural",
"EchoElf 🧝": "en-US-AnaNeural",
"PhantomFox 🦊": "en-US-BrandonNeural",
"WittyWizard 🧙": "en-GB-ThomasNeural",
"LunarLlama 🌙": "en-AU-FreyaNeural",
"SolarSloth ☀️": "en-CA-LindaNeural",
"AstroAlpaca 🦙": "en-US-ChristopherNeural",
"CyberCoyote 🐺": "en-GB-ElliotNeural",
"MysticMoose 🦌": "en-AU-JamesNeural",
"GlitchGnome 🧚": "en-CA-EthanNeural",
"VortexViper 🐍": "en-US-AmberNeural",
"ChronoChimp 🐒": "en-GB-LibbyNeural"
}
EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values()))
FILE_EMOJIS = {"md": "📝", "mp3": "🎵", "png": "🖼️", "mp4": "🎥", "zip": "📦"}
# 📁 Directories
for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "audio_cache", "paper_metadata"]:
os.makedirs(d, exist_ok=True)
CHAT_DIR = "chat_logs"
VOTE_DIR = "vote_logs"
MEDIA_DIR = "."
AUDIO_CACHE_DIR = "audio_cache"
AUDIO_DIR = "audio_logs"
PAPER_DIR = "paper_metadata"
STATE_FILE = "user_state.txt"
CHAT_FILE = os.path.join(CHAT_DIR, "global_chat.md")
QUOTE_VOTES_FILE = os.path.join(VOTE_DIR, "quote_votes.md")
IMAGE_VOTES_FILE = os.path.join(VOTE_DIR, "image_votes.md")
HISTORY_FILE = os.path.join(VOTE_DIR, "vote_history.md")
# 🔑 API Keys
load_dotenv()
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', ""))
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ""))
openai_client = openai.OpenAI(api_key=openai_api_key)
# 🕒 Timestamp Helper
def format_timestamp_prefix(username=""):
central = pytz.timezone('US/Central')
now = datetime.now(central)
return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}"
# 📈 Performance Timer
class PerformanceTimer:
def __init__(self, name):
self.name, self.start = name, None
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, *args):
duration = time.time() - self.start
st.session_state['operation_timings'][self.name] = duration
st.session_state['performance_metrics'][self.name].append(duration)
# 🎛️ Session State Init
def init_session_state():
defaults = {
'server_running': False, 'server_task': None, 'active_connections': {},
'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [],
'message_text': "", 'audio_cache': {}, 'pasted_image_data': None,
'quote_line': None, 'refresh_rate': 5, 'base64_cache': {},
'transcript_history': [], 'last_transcript': "", 'image_hashes': set(),
'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': {
"background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px",
"animationDuration": "20s", "width": "100%", "lineHeight": "35px"
}, 'operation_timings': {}, 'performance_metrics': defaultdict(list),
'enable_audio': True, 'download_link_cache': {}, 'username': None,
'autosend': True, 'autosearch': True, 'last_message': "", 'last_query': "",
'mp3_files': {}, 'timer_start': time.time(), 'quote_index': 0,
'quote_source': "famous", 'last_sent_transcript': "", 'old_val': None,
'last_refresh': time.time(), 'paper_metadata': {}, 'paste_image_base64': "",
'use_arxiv': True, 'use_arxiv_audio': False, 'speech_processed': False
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# 🖌️ Marquee Helpers
def update_marquee_settings_ui():
st.sidebar.markdown("### 🎯 Marquee Settings")
cols = st.sidebar.columns(2)
with cols[0]:
st.session_state['marquee_settings']['background'] = st.color_picker("🎨 Background", "#1E1E1E")
st.session_state['marquee_settings']['color'] = st.color_picker("✍️ Text", "#FFFFFF")
with cols[1]:
st.session_state['marquee_settings']['font-size'] = f"{st.slider('📏 Size', 10, 24, 14)}px"
st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('⏱️ Speed', 1, 20, 20)}s"
def display_marquee(text, settings, key_suffix=""):
truncated = text[:280] + "..." if len(text) > 280 else text
streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}")
st.write("")
# 📝 Text & File Helpers
def clean_text_for_tts(text):
return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text"
def clean_text_for_filename(text):
return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:50]
def get_high_info_terms(text, top_n=10):
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'}
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2]
return [t for t, _ in Counter(filtered).most_common(top_n)]
def generate_filename(prompt, username, file_type="md", title=None):
timestamp = format_timestamp_prefix(username)
if title:
high_info = '-'.join(get_high_info_terms(title, 5))
return f"{timestamp}-{clean_text_for_filename(prompt[:20])}-{high_info}.{file_type}"
hash_val = hashlib.md5(prompt.encode()).hexdigest()[:8]
return f"{timestamp}-{hash_val}.{file_type}"
def create_file(prompt, username, file_type="md", title=None):
filename = generate_filename(prompt, username, file_type, title)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt)
return filename
def get_download_link(file, file_type="mp3"):
cache_key = f"dl_{file}"
if cache_key not in st.session_state['download_link_cache']:
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
mime_types = {"mp3": "audio/mpeg", "png": "image/png", "mp4": "video/mp4", "md": "text/markdown", "zip": "application/zip"}
st.session_state['download_link_cache'][cache_key] = f'<a href="data:{mime_types.get(file_type, "application/octet-stream")};base64,{b64}" download="{os.path.basename(file)}">{FILE_EMOJIS.get(file_type, "Download")} Download {os.path.basename(file)}</a>'
return st.session_state['download_link_cache'][cache_key]
def save_username(username):
try:
with open(STATE_FILE, 'w') as f:
f.write(username)
except Exception as e:
print(f"Failed to save username: {e}")
def load_username():
if os.path.exists(STATE_FILE):
try:
with open(STATE_FILE, 'r') as f:
return f.read().strip()
except Exception as e:
print(f"Failed to load username: {e}")
return None
def concatenate_markdown_files(exclude_files=["README.md"]):
md_files = sorted([f for f in glob.glob("*.md") if os.path.basename(f) not in exclude_files], key=os.path.getmtime)
all_md_content = ""
for i, md_file in enumerate(md_files, 1):
with open(md_file, 'r', encoding='utf-8') as f:
content = f.read().strip()
all_md_content += f"{i}. {content}\n"
return all_md_content.rstrip()
# 🎶 Audio Processing
async def async_edge_tts_generate(text, voice, username, rate=0, pitch=0, file_format="mp3"):
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
if cache_key in st.session_state['audio_cache']:
return st.session_state['audio_cache'][cache_key], 0
start_time = time.time()
text = clean_text_for_tts(text)
if not text or text == "No text":
print(f"Skipping audio generation for empty/invalid text: '{text}'")
return None, 0
filename = f"{format_timestamp_prefix(username)}-{hashlib.md5(text.encode()).hexdigest()[:8]}.{file_format}"
try:
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz")
await communicate.save(filename)
if os.path.exists(filename) and os.path.getsize(filename) > 0:
st.session_state['audio_cache'][cache_key] = filename
return filename, time.time() - start_time
else:
print(f"Audio file {filename} was not created or is empty.")
return None, 0
except edge_tts.exceptions.NoAudioReceived as e:
print(f"No audio received for text: '{text}' with voice: {voice}. Error: {e}")
return None, 0
except Exception as e:
print(f"Error generating audio for text: '{text}' with voice: {voice}. Error: {e}")
return None, 0
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
st.markdown(get_download_link(file_path), unsafe_allow_html=True)
else:
st.warning(f"Audio file not found: {file_path}")
def load_mp3_viewer():
mp3_files = sorted(glob.glob("*.mp3"), key=os.path.getmtime)
for i, mp3 in enumerate(mp3_files, 1):
filename = os.path.basename(mp3)
if filename not in st.session_state['mp3_files']:
st.session_state['mp3_files'][filename] = (i, mp3)
async def save_chat_entry(username, message, voice, is_markdown=False):
if not message.strip() or message == st.session_state.last_transcript:
return None, None
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S")
entry = f"[{timestamp}] {username} ({voice}): {message}" if not is_markdown else f"[{timestamp}] {username} ({voice}):\n```markdown\n{message}\n```"
md_file = create_file(entry, username, "md")
with open(CHAT_FILE, 'a') as f:
f.write(f"{entry}\n")
audio_file, _ = await async_edge_tts_generate(message, voice, username)
if audio_file:
with open(HISTORY_FILE, 'a') as f:
f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n")
st.session_state['mp3_files'][os.path.basename(audio_file)] = (len(st.session_state['chat_history']) + 1, audio_file)
if st.session_state.get('speech_processed', False) and st.session_state.get('message_input', '') == message:
st.session_state['message_input'] = ""
st.session_state['speech_processed'] = False
else:
st.warning(f"Failed to generate audio for: {message}")
await broadcast_message(f"{username}|{message}", "chat")
st.session_state.last_chat_update = time.time()
st.session_state.chat_history.append(entry)
st.session_state.last_transcript = message
return md_file, audio_file
async def load_chat():
if not os.path.exists(CHAT_FILE):
with open(CHAT_FILE, 'a') as f:
f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! 🎤\n")
with open(CHAT_FILE, 'r') as f:
content = f.read().strip()
lines = content.split('\n')
unique_lines = list(dict.fromkeys(line for line in lines if line.strip()))
return unique_lines
# Claude Search Function with Image Support
async def perform_claude_search(query, username, image=None):
if not query.strip() or query == st.session_state.last_transcript:
return None, None, None
client = anthropic.Anthropic(api_key=anthropic_key)
message_content = [{"type": "text", "text": query}]
if image:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
message_content.append({
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": img_base64
}
})
try:
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": message_content}]
)
result = response.content[0].text
st.markdown(f"### Claude's Reply 🧠\n{result}")
except Exception as e:
st.error(f"Claude processing failed: {e}")
return None, None, None
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
md_file, audio_file = await save_chat_entry(username, f"Claude Search: {query}\nResponse: {result}", voice, True)
return md_file, audio_file, result
# ArXiv Search Function
async def perform_arxiv_search(query, username, claude_result=None):
if not query.strip() or query == st.session_state.last_transcript:
return None, None
if claude_result is None:
client = anthropic.Anthropic(api_key=anthropic_key)
claude_response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": query}]
)
claude_result = claude_response.content[0].text
st.markdown(f"### Claude's Reply 🧠\n{claude_result}")
enhanced_query = f"{query}\n\n{claude_result}"
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = gradio_client.predict(
enhanced_query, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md"
)[0]
result = f"🔎 {enhanced_query}\n\n{refs}"
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
md_file, audio_file = await save_chat_entry(username, f"ArXiv Search: {query}\nClaude Response: {claude_result}\nArXiv Results: {refs}", voice, True)
return md_file, audio_file
async def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
start = time.time()
client = anthropic.Anthropic(api_key=anthropic_key)
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": q}]
)
st.write("Claude's reply 🧠:")
st.markdown(response.content[0].text)
result = response.content[0].text
md_file = create_file(result, "System", "md")
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice'], "System")
st.subheader("📝 Main Response Audio")
play_and_download_audio(audio_file)
papers = []
if useArxiv:
q = q + result
st.write('Running Arxiv RAG with Claude inputs.')
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = gradio_client.predict(
q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md"
)[0]
papers = parse_arxiv_refs(refs, q)
for paper in papers:
filename = create_file(generate_5min_feature_markdown(paper), "System", "md", paper['title'])
paper['md_file'] = filename
st.session_state['paper_metadata'][paper['title']] = filename
if papers and useArxivAudio:
await create_paper_audio_files(papers, q)
elapsed = time.time() - start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return result, papers
# 🌐 WebSocket Handling
async def websocket_handler(websocket, path):
client_id = str(uuid.uuid4())
room_id = "chat"
if room_id not in st.session_state.active_connections:
st.session_state.active_connections[room_id] = {}
st.session_state.active_connections[room_id][client_id] = websocket
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys())))
chat_content = await load_chat()
if not any(f"Client-{client_id}" in line for line in chat_content):
await save_chat_entry("System 🌟", f"{username} has joined {START_ROOM}!", "en-US-AriaNeural")
try:
async for message in websocket:
if '|' in message:
username, content = message.split('|', 1)
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural")
await save_chat_entry(username, content, voice)
else:
await websocket.send("ERROR|Message format: username|content")
except websockets.ConnectionClosed:
await save_chat_entry("System 🌟", f"{username} has left {START_ROOM}!", "en-US-AriaNeural")
finally:
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
async def broadcast_message(message, room_id):
if room_id in st.session_state.active_connections:
disconnected = []
for client_id, ws in st.session_state.active_connections[room_id].items():
try:
await ws.send(message)
except websockets.ConnectionClosed:
disconnected.append(client_id)
for client_id in disconnected:
if client_id in st.session_state.active_connections[room_id]:
del st.session_state.active_connections[room_id][client_id]
async def run_websocket_server():
if not st.session_state.get('server_running', False): # Safe access with default
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765)
st.session_state['server_running'] = True
await server.wait_closed()
def start_websocket_server():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(run_websocket_server())
# 📚 PDF to Audio
class AudioProcessor:
def __init__(self):
self.cache_dir = AUDIO_CACHE_DIR
os.makedirs(self.cache_dir, exist_ok=True)
self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {}
def _save_metadata(self):
with open(f"{self.cache_dir}/metadata.json", 'w') as f:
json.dump(self.metadata, f)
async def create_audio(self, text, voice='en-US-AriaNeural'):
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest()
cache_path = f"{self.cache_dir}/{cache_key}.mp3"
if cache_key in self.metadata and os.path.exists(cache_path):
return cache_path
text = clean_text_for_tts(text)
if not text:
return None
communicate = edge_tts.Communicate(text, voice)
await communicate.save(cache_path)
self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice}
self._save_metadata()
return cache_path
def process_pdf(pdf_file, max_pages, voice, audio_processor):
reader = PdfReader(pdf_file)
total_pages = min(len(reader.pages), max_pages)
texts, audios = [], {}
async def process_page(i, text):
audio_path = await audio_processor.create_audio(text, voice)
if audio_path:
audios[i] = audio_path
for i in range(total_pages):
text = reader.pages[i].extract_text()
texts.append(text)
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start()
return texts, audios, total_pages
# 🔍 ArXiv & AI Lookup
def parse_arxiv_refs(ref_text, query):
if not ref_text:
return []
papers = []
current = {}
for line in ref_text.split('\n'):
if line.count('|') == 2:
if current:
papers.append(current)
date, title, *_ = line.strip('* ').split('|')
url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}"
current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': '', 'query': query}
elif current:
if not current['authors']:
current['authors'] = line.strip('* ')
else:
current['summary'] += ' ' + line.strip() if current['summary'] else line.strip()
if current:
papers.append(current)
return papers[:20]
def generate_5min_feature_markdown(paper):
title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url']
pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "")
wct, sw = len(title.split()), len(summary.split())
terms = get_high_info_terms(summary, 15)
rouge = round((len(terms) / max(sw, 1)) * 100, 2)
mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```"
return f"""
## 📄 {title}
**Authors:** {authors}
**Date:** {date}
**Words:** Title: {wct}, Summary: {sw}
**Links:** [Abstract]({url}) | [PDF]({pdf_url})
**Terms:** {', '.join(terms)}
**ROUGE:** {rouge}%
### 🎤 TTF Read Aloud
- **Title:** {title}
- **Terms:** {', '.join(terms)}
- **ROUGE:** {rouge}%
#### Concepts Graph
{mermaid}
---
"""
async def create_paper_audio_files(papers, query):
for p in papers:
audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}")
p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice'], p['authors'])
if p['full_audio']:
p['download_base64'] = get_download_link(p['full_audio'])
def save_vote(file, item, user_hash):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
entry = f"[{timestamp}] {user_hash} voted for {item}"
try:
with open(file, 'a') as f:
f.write(f"{entry}\n")
with open(HISTORY_FILE, 'a') as f:
f.write(f"- {timestamp} - User {user_hash} voted for {item}\n")
return True
except Exception as e:
print(f"Vote save flop: {e}")
return False
def load_votes(file):
if not os.path.exists(file):
with open(file, 'w') as f:
f.write("# Vote Tally\n\nNo votes yet - get clicking! 🖱️\n")
try:
with open(file, 'r') as f:
lines = f.read().strip().split('\n')
votes = {}
for line in lines[2:]:
if line.strip() and 'voted for' in line:
item = line.split('voted for ')[1]
votes[item] = votes.get(item, 0) + 1
return votes
except Exception as e:
print(f"Vote load oopsie: {e}")
return {}
def generate_user_hash():
if 'user_hash' not in st.session_state:
session_id = str(random.getrandbits(128))
hash_object = hashlib.md5(session_id.encode())
st.session_state['user_hash'] = hash_object.hexdigest()[:8]
return st.session_state['user_hash']
async def save_pasted_image(image, username, prompt=""):
img_hash = hashlib.md5(image.tobytes()).hexdigest()[:8]
if img_hash in st.session_state.image_hashes:
return None
context = prompt if prompt else st.session_state.get('last_message', "pasted_image")
timestamp = format_timestamp_prefix(username)
filename = f"{timestamp}-{clean_text_for_filename(context)}-{img_hash}.png"
filepath = filename
try:
image.save(filepath, "PNG")
st.session_state.image_hashes.add(img_hash)
await save_chat_entry(username, f"Pasted image saved: {filepath}", FUN_USERNAMES.get(username, "en-US-AriaNeural"))
return filepath
except Exception as e:
st.error(f"Failed to save image: {e}")
return None
# 📦 Zip Files
def create_zip_of_files(files, prefix="All", query="latest"):
if not files:
return None
terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in files] + [query]), 5)
zip_name = f"{prefix}_{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip"
with zipfile.ZipFile(zip_name, 'w') as z:
[z.write(f) for f in files]
return zip_name
# Custom Paste Image Component
def paste_image_component():
with st.form(key="paste_form"):
paste_input = st.text_input("Paste Base64 Image Here (hidden)", value="", key="paste_input", label_visibility="collapsed")
st.markdown("""
<script>
function pasteClipboard() {
navigator.clipboard.readText().then(text => {
document.getElementById('paste_input').value = text;
document.getElementById('paste_form').requestSubmit();
}).catch(err => {
console.error('Failed to read clipboard: ', err);
document.getElementById('paste_input').value = 'ERROR: ' + err.message;
document.getElementById('paste_form').requestSubmit();
});
}
</script>
""", unsafe_allow_html=True)
paste_button = st.form_submit_button("Paste Image 📋", on_click=lambda: st.markdown("<script>pasteClipboard();</script>", unsafe_allow_html=True))
if paste_button and paste_input:
if paste_input.startswith('ERROR:'):
st.warning(f"Paste failed: {paste_input}")
return None
if paste_input.startswith('data:image'):
try:
base64_str = paste_input.split(',')[1]
img_bytes = base64.b64decode(base64_str)
img = Image.open(io.BytesIO(img_bytes))
st.image(img, caption="Image Pasted Successfully", use_column_width=True)
return img
except Exception as e:
st.error(f"Error decoding pasted image: {e}")
return None
else:
st.warning("Clipboard does not contain a valid image (expected base64 data:image)")
return None
return None
# 🎮 Main Interface
def main():
init_session_state() # Ensure session state is initialized before any threads
load_mp3_viewer()
saved_username = load_username()
if saved_username and saved_username in FUN_USERNAMES:
st.session_state.username = saved_username
if not st.session_state.username:
available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in asyncio.run(load_chat()))]
st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys()))
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username]
asyncio.run(save_chat_entry("System 🌟", f"{st.session_state.username} has joined {START_ROOM}!", "en-US-AriaNeural"))
save_username(st.session_state.username)
st.title(f"{Site_Name} for {st.session_state.username}")
update_marquee_settings_ui()
display_marquee(f"🚀 Welcome to {START_ROOM} | 🤖 {st.session_state.username}", st.session_state['marquee_settings'], "welcome")
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="", key=f"speech_{st.session_state.get('speech_processed', False)}")
if val and val != st.session_state.last_transcript:
val_stripped = val.strip().replace('\n', ' ')
if val_stripped:
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
st.session_state['speech_processed'] = True
md_file, audio_file = asyncio.run(save_chat_entry(st.session_state.username, val_stripped, voice))
if audio_file:
play_and_download_audio(audio_file)
st.rerun()
tab_main = st.radio("Action:", ["🎤 Chat & Voice", "🔍 ArXiv", "📚 PDF to Audio"], horizontal=True, key="tab_main")
st.checkbox("Search ArXiv", key="use_arxiv")
st.checkbox("ArXiv Audio", key="use_arxiv_audio")
st.checkbox("Autosend Chat", key="autosend")
st.checkbox("Autosearch ArXiv", key="autosearch")
if tab_main == "🎤 Chat & Voice":
st.subheader(f"{START_ROOM} Chat 💬")
chat_content = asyncio.run(load_chat())
chat_container = st.container()
with chat_container:
numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(chat_content))
st.code(numbered_content, language="python")
message = st.text_input(f"Message as {st.session_state.username}", key="message_input")
pasted_image = paste_image_component()
if pasted_image is not None:
if st.session_state['paste_image_base64'] != base64.b64encode(pasted_image.tobytes()).decode('utf-8'):
st.session_state['paste_image_base64'] = base64.b64encode(pasted_image.tobytes()).decode('utf-8')
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
image_prompt = st.text_input("Add a prompt for Claude (e.g., 'OCR this image')", key="image_prompt", value="")
with st.spinner("Saving image..."):
filename = asyncio.run(save_pasted_image(pasted_image, st.session_state.username, image_prompt))
if filename:
st.success(f"Image saved as: {filename}")
if image_prompt:
with st.spinner("Processing with Claude..."):
md_file_claude, audio_file_claude, claude_result = asyncio.run(
perform_claude_search(image_prompt, st.session_state.username, pasted_image)
)
if audio_file_claude:
play_and_download_audio(audio_file_claude)
if claude_result:
with st.spinner("Searching ArXiv..."):
md_file_arxiv, audio_file_arxiv = asyncio.run(
perform_arxiv_search(image_prompt, st.session_state.username, claude_result)
)
if audio_file_arxiv:
play_and_download_audio(audio_file_arxiv)
st.session_state.pasted_image_data = None
st.session_state['paste_image_base64'] = ""
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
if (message and message != st.session_state.last_message) or (st.session_state.pasted_image_data and not st.session_state['paste_image_base64']):
st.session_state.last_message = message
col_send, col_claude, col_arxiv = st.columns([1, 1, 1])
with col_send:
if st.session_state.autosend or st.button("Send 🚀", key="send_button"):
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
if message.strip():
md_file, audio_file = asyncio.run(save_chat_entry(st.session_state.username, message, voice, True))
if audio_file:
play_and_download_audio(audio_file)
if st.session_state.pasted_image_data:
asyncio.run(save_chat_entry(st.session_state.username, f"Pasted image: {st.session_state.pasted_image_data}", voice))
st.session_state.pasted_image_data = None
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
with col_claude:
if st.button("🧠 Claude", key="claude_button"):
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
if message.strip():
md_file, audio_file, _ = asyncio.run(perform_claude_search(message, st.session_state.username))
if audio_file:
play_and_download_audio(audio_file)
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
with col_arxiv:
if st.button("🔍 ArXiv", key="arxiv_button"):
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
if message.strip():
md_file, audio_file = asyncio.run(perform_arxiv_search(message, st.session_state.username))
if audio_file:
play_and_download_audio(audio_file)
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
elif tab_main == "🔍 ArXiv":
st.subheader("🔍 Query ArXiv")
q = st.text_input("🔍 Query:", key="arxiv_query")
if q and q != st.session_state.last_query:
st.session_state.last_query = q
if st.session_state.autosearch or st.button("🔍 Run", key="arxiv_run"):
result, papers = asyncio.run(perform_ai_lookup(q, useArxiv=st.session_state['use_arxiv'], useArxivAudio=st.session_state['use_arxiv_audio']))
st.markdown(f"### Query: {q}")
for i, p in enumerate(papers, 1):
expander_label = f"{p['title']} | [arXiv Link]({p['url']})"
with st.expander(expander_label):
with open(p['md_file'], 'r', encoding='utf-8') as f:
content = f.read()
numbered_content = "\n".join(f"{j+1}. {line}" for j, line in enumerate(content.split('\n')))
st.code(numbered_content, language="python")
elif tab_main == "📚 PDF to Audio":
audio_processor = AudioProcessor()
pdf_file = st.file_uploader("Choose PDF", "pdf", key="pdf_upload")
max_pages = st.slider('Pages', 1, 100, 10, key="pdf_pages")
if pdf_file:
with st.spinner('Processing...'):
texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor)
for i, text in enumerate(texts):
with st.expander(f"Page {i+1}"):
st.markdown(text)
while i not in audios:
time.sleep(0.1)
if audios.get(i):
st.audio(audios[i])
st.markdown(get_download_link(audios[i], "mp3"), unsafe_allow_html=True)
voice = FUN_USERNAMES.get(st.session_state.username, "en-US-AriaNeural")
asyncio.run(save_chat_entry(st.session_state.username, f"PDF Page {i+1} converted to audio: {audios[i]}", voice))
# Always Visible Media Gallery
st.header("📸 Media Gallery")
all_files = sorted(glob.glob("*.md") + glob.glob("*.mp3") + glob.glob("*.png") + glob.glob("*.mp4"), key=os.path.getmtime)
md_files = [f for f in all_files if f.endswith('.md') and os.path.basename(f) != "README.md"]
mp3_files = [f for f in all_files if f.endswith('.mp3')]
png_files = [f for f in all_files if f.endswith('.png')]
mp4_files = [f for f in all_files if f.endswith('.mp4')]
st.subheader("All Submitted Text")
all_md_content = concatenate_markdown_files()
with st.expander("View All Markdown Content"):
st.markdown(all_md_content)
st.subheader("🎵 Audio (MP3)")
for filename, (num, mp3) in sorted(st.session_state['mp3_files'].items(), key=lambda x: x[1][0]):
with st.expander(f"{num}. ${filename}"):
st.audio(mp3)
st.markdown(get_download_link(mp3, "mp3"), unsafe_allow_html=True)
st.subheader("🖼️ Images (PNG)")
for png in sorted(png_files, key=os.path.getmtime):
with st.expander(os.path.basename(png)):
st.image(png, use_container_width=True)
st.markdown(get_download_link(png, "png"), unsafe_allow_html=True)
st.subheader("🎥 Videos (MP4)")
for mp4 in sorted(mp4_files, key=os.path.getmtime):
with st.expander(os.path.basename(mp4)):
st.video(mp4)
st.markdown(get_download_link(mp4, "mp4"), unsafe_allow_html=True)
# 🗂️ Sidebar with Dialog and Audio
st.sidebar.subheader("Voice Settings")
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username), key="username_select")
if new_username != st.session_state.username:
asyncio.run(save_chat_entry("System 🌟", f"{st.session_state.username} changed to {new_username}", "en-US-AriaNeural"))
st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username]
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
st.rerun()
st.sidebar.markdown("### 💬 Chat Dialog")
chat_content = asyncio.run(load_chat())
with st.sidebar.expander("Chat History"):
numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(chat_content))
st.code(numbered_content, language="python")
st.sidebar.subheader("Vote Totals")
chat_votes = load_votes(QUOTE_VOTES_FILE)
image_votes = load_votes(IMAGE_VOTES_FILE)
for item, count in chat_votes.items():
st.sidebar.write(f"{item}: {count} votes")
for image, count in image_votes.items():
st.sidebar.write(f"{image}: {count} votes")
st.sidebar.markdown("### 📂 File History")
for f in all_files[:10]:
st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '📄')} {os.path.basename(f)}")
st.sidebar.subheader("📦 Zip Downloads")
if st.sidebar.button("⬇️ Zip All", key="zip_all"):
zip_name = create_zip_of_files(all_files, "All")
if zip_name:
st.session_state['download_link_cache'] = {}
if st.sidebar.button("⬇️ Zip All MD", key="zip_md"):
zip_name = create_zip_of_files(md_files, "MD")
if zip_name:
st.session_state['download_link_cache'] = {}
if st.sidebar.button("⬇️ Zip All MP3", key="zip_mp3"):
zip_name = create_zip_of_files(mp3_files, "MP3")
if zip_name:
st.session_state['download_link_cache'] = {}
if st.sidebar.button("⬇️ Zip All PNG", key="zip_png"):
zip_name = create_zip_of_files(png_files, "PNG")
if zip_name:
st.session_state['download_link_cache'] = {}
if st.sidebar.button("⬇️ Zip All MP4", key="zip_mp4"):
zip_name = create_zip_of_files(mp4_files, "MP4")
if zip_name:
st.session_state['download_link_cache'] = {}
zip_files = sorted(glob.glob("*.zip"), key=os.path.getmtime, reverse=True)
for zip_file in zip_files:
st.sidebar.markdown(get_download_link(zip_file, "zip"), unsafe_allow_html=True)
# Refresh Timer in Sidebar
st.sidebar.subheader("Set Refresh Rate ⏳")
st.markdown("""
<style>
.timer {
font-size: 24px;
color: #ffcc00;
text-align: center;
animation: pulse 1s infinite;
}
@keyframes pulse {
0% { transform: scale(1); }
50% { transform: scale(1.1); }
100% { transform: scale(1); }
}
</style>
""", unsafe_allow_html=True)
refresh_rate = st.sidebar.slider("Refresh Rate (seconds)", min_value=1, max_value=300, value=st.session_state.refresh_rate, step=1)
if refresh_rate != st.session_state.refresh_rate:
st.session_state.refresh_rate = refresh_rate
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
col1, col2, col3 = st.sidebar.columns(3)
with col1:
if st.button("🐇 Small (1s)"):
st.session_state.refresh_rate = 1
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
with col2:
if st.button("🐢 Medium (5s)"):
st.session_state.refresh_rate = 5
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
with col3:
if st.button("🐘 Large (5m)"):
st.session_state.refresh_rate = 300
st.session_state.timer_start = time.time()
save_username(st.session_state.username)
timer_placeholder = st.sidebar.empty()
start_time = st.session_state.timer_start
remaining_time = int(st.session_state.refresh_rate - (time.time() - start_time))
if remaining_time <= 0:
st.session_state.timer_start = time.time()
st.session_state.last_refresh = time.time()
st.rerun()
else:
timer_placeholder.markdown(f"<p class='timer'>⏳ Next refresh in: {remaining_time} seconds</p>", unsafe_allow_html=True)
# Start WebSocket server only after session state is initialized
if not st.session_state.get('server_running', False) and not st.session_state.get('server_task', None):
st.session_state.server_task = threading.Thread(target=start_websocket_server, daemon=True)
st.session_state.server_task.start()
if __name__ == "__main__":
main()