# ๐Ÿš€ Main App - TalkingAIResearcher with Chat, Voice, Media, ArXiv, and More import streamlit as st import asyncio import websockets import uuid import argparse import os import random import time import hashlib from PIL import Image import glob import base64 import io import streamlit.components.v1 as components import edge_tts from audio_recorder_streamlit import audio_recorder import nest_asyncio import re import pytz import shutil import anthropic import openai from PyPDF2 import PdfReader import threading import json import zipfile from gradio_client import Client from dotenv import load_dotenv from streamlit_marquee import streamlit_marquee from datetime import datetime from collections import defaultdict, Counter import pandas as pd # ๐Ÿ› ๏ธ Patch asyncio for nesting glory nest_asyncio.apply() # ๐ŸŽจ Page Config st.set_page_config( page_title="๐ŸšฒTalkingAIResearcher๐Ÿ†", page_icon="๐Ÿšฒ๐Ÿ†", layout="wide", initial_sidebar_state="auto" ) # ๐ŸŒŸ Static Config icons = '๐Ÿค–๐Ÿง ๐Ÿ”ฌ๐Ÿ“' START_ROOM = "Sector ๐ŸŒŒ" FUN_USERNAMES = { "CosmicJester ๐ŸŒŒ": "en-US-AriaNeural", "PixelPanda ๐Ÿผ": "en-US-JennyNeural", "QuantumQuack ๐Ÿฆ†": "en-GB-SoniaNeural", "StellarSquirrel ๐Ÿฟ๏ธ": "en-AU-NatashaNeural", "GizmoGuru โš™๏ธ": "en-CA-ClaraNeural", "NebulaNinja ๐ŸŒ ": "en-US-GuyNeural", "ByteBuster ๐Ÿ’พ": "en-GB-RyanNeural", "GalacticGopher ๐ŸŒ": "en-AU-WilliamNeural", "RocketRaccoon ๐Ÿš€": "en-CA-LiamNeural", "EchoElf ๐Ÿง": "en-US-AnaNeural", } EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values())) # ๐ŸŽ™๏ธ Voice options FILE_EMOJIS = {"md": "๐Ÿ“", "mp3": "๐ŸŽต", "wav": "๐Ÿ”Š"} # ๐Ÿ“ Directories for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "media_files", "audio_cache"]: os.makedirs(d, exist_ok=True) CHAT_FILE = "chat_logs/global_chat.md" HISTORY_FILE = "history_logs/chat_history.md" MEDIA_DIR = "media_files" AUDIO_CACHE_DIR = "audio_cache" # ๐Ÿ”‘ API Keys load_dotenv() anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', "")) openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', "")) openai_client = openai.OpenAI(api_key=openai_api_key) # ๐Ÿ•’ Timestamp Helper def format_timestamp_prefix(username=""): central = pytz.timezone('US/Central') now = datetime.now(central) return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}" # ๐Ÿ“ˆ Performance Timer class PerformanceTimer: def __init__(self, name): self.name, self.start = name, None def __enter__(self): self.start = time.time() return self def __exit__(self, *args): duration = time.time() - self.start st.session_state['operation_timings'][self.name] = duration st.session_state['performance_metrics'][self.name].append(duration) # ๐ŸŽ›๏ธ Session State Init def init_session_state(): defaults = { 'server_running': False, 'server_task': None, 'active_connections': {}, 'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [], 'message_text': "", 'audio_cache': {}, 'pasted_image_data': None, 'quote_line': None, 'refresh_rate': 5, 'base64_cache': {}, 'transcript_history': [], 'last_transcript': "", 'image_hashes': set(), 'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': { "background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px", "animationDuration": "20s", "width": "100%", "lineHeight": "35px" }, 'operation_timings': {}, 'performance_metrics': defaultdict(list), 'enable_audio': True, 'download_link_cache': {}, 'username': None, 'autosend': True, 'autosearch': True, 'last_message': "", 'last_query': "" } for k, v in defaults.items(): if k not in st.session_state: st.session_state[k] = v # ๐Ÿ–Œ๏ธ Marquee Helpers def update_marquee_settings_ui(): # ๐ŸŽจ Sidebar marquee controls st.sidebar.markdown("### ๐ŸŽฏ Marquee Settings") cols = st.sidebar.columns(2) with cols[0]: st.session_state['marquee_settings']['background'] = st.color_picker("๐ŸŽจ Background", "#1E1E1E") st.session_state['marquee_settings']['color'] = st.color_picker("โœ๏ธ Text", "#FFFFFF") with cols[1]: st.session_state['marquee_settings']['font-size'] = f"{st.slider('๐Ÿ“ Size', 10, 24, 14)}px" st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('โฑ๏ธ Speed', 1, 20, 20)}s" def display_marquee(text, settings, key_suffix=""): # ๐ŸŒˆ Show marquee with truncation truncated = text[:280] + "..." if len(text) > 280 else text streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}") st.write("") # ๐Ÿ“ Text & File Helpers def clean_text_for_tts(text): return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text" def clean_text_for_filename(text): return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:200] def get_high_info_terms(text, top_n=10): stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'} words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2] return [t for t, _ in Counter(filtered).most_common(top_n)] def generate_filename(prompt, response, file_type="md"): # ๐Ÿ“ Smart filename with info terms prefix = format_timestamp_prefix() terms = get_high_info_terms(prompt + " " + response, 5) snippet = clean_text_for_filename(prompt[:40] + " " + response[:40]) wct, sw = len(prompt.split()), len(response.split()) dur = round((wct + sw) / 2.5) base = '_'.join(list(dict.fromkeys(terms + [snippet])))[:200 - len(prefix) - len(f"_wct{wct}_sw{sw}_dur{dur}.{file_type}")] return f"{prefix}{base}_wct{wct}_sw{sw}_dur{dur}.{file_type}" def create_file(prompt, response, file_type="md"): # ๐Ÿ“ Save file with Q&A filename = generate_filename(prompt, response, file_type) with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) return filename def get_download_link(file, file_type="mp3"): # โฌ‡๏ธ Cached download link cache_key = f"dl_{file}" if cache_key not in st.session_state['download_link_cache']: with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() st.session_state['download_link_cache'][cache_key] = f'{FILE_EMOJIS.get(file_type, "Download")} Download {os.path.basename(file)}' return st.session_state['download_link_cache'][cache_key] # ๐ŸŽถ Audio Processing async def async_edge_tts_generate(text, voice, rate=0, pitch=0, file_format="mp3"): # ๐ŸŽต Async TTS with caching - Fixed KeyError! cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}" if cache_key in st.session_state['audio_cache']: return st.session_state['audio_cache'][cache_key], 0 start_time = time.time() text = clean_text_for_tts(text) if not text: return None, 0 filename = f"audio_{format_timestamp_prefix()}_{random.randint(1000, 9999)}.{file_format}" communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz") await communicate.save(filename) st.session_state['audio_cache'][cache_key] = filename return filename, time.time() - start_time # No reliance on operation_timings def play_and_download_audio(file_path): # ๐Ÿ”Š Play + download if file_path and os.path.exists(file_path): st.audio(file_path) st.markdown(get_download_link(file_path), unsafe_allow_html=True) async def save_chat_entry(username, message, is_markdown=False): # ๐Ÿ’ฌ Save chat with multicast broadcast central = pytz.timezone('US/Central') timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S") entry = f"[{timestamp}] {username}: {message}" if not is_markdown else f"[{timestamp}] {username}:\n```markdown\n{message}\n```" with open(CHAT_FILE, 'a') as f: f.write(f"{entry}\n") voice = FUN_USERNAMES.get(username, "en-US-AriaNeural") audio_file, _ = await async_edge_tts_generate(clean_text_for_tts(message), voice) if audio_file: with open(HISTORY_FILE, 'a') as f: f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n") await broadcast_message(f"{username}|{message}", "chat") st.session_state.last_chat_update = time.time() st.session_state.chat_history.append(entry) # Append to history return audio_file async def load_chat(): # ๐Ÿ“œ Load chat history - Numbered like old version if not os.path.exists(CHAT_FILE): with open(CHAT_FILE, 'a') as f: f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! ๐ŸŽค\n") with open(CHAT_FILE, 'r') as f: content = f.read().strip() lines = content.split('\n') numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(lines) if line.strip()) return numbered_content # ๐ŸŒ WebSocket Handling async def websocket_handler(websocket, path): # ๐Ÿค Handle WebSocket clients - Fixed multicast client_id = str(uuid.uuid4()) room_id = "chat" if room_id not in st.session_state.active_connections: st.session_state.active_connections[room_id] = {} st.session_state.active_connections[room_id][client_id] = websocket username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys()))) chat_content = await load_chat() if not any(f"Client-{client_id}" in line for line in chat_content.split('\n')): await save_chat_entry("System ๐ŸŒŸ", f"{username} has joined {START_ROOM}!") try: async for message in websocket: if '|' in message: username, content = message.split('|', 1) await save_chat_entry(username, content) else: await websocket.send("ERROR|Message format: username|content") except websockets.ConnectionClosed: await save_chat_entry("System ๐ŸŒŸ", f"{username} has left {START_ROOM}!") finally: if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]: del st.session_state.active_connections[room_id][client_id] async def broadcast_message(message, room_id): # ๐Ÿ“ข Broadcast to all clients - Fixed! if room_id in st.session_state.active_connections: disconnected = [] for client_id, ws in st.session_state.active_connections[room_id].items(): try: await ws.send(message) except websockets.ConnectionClosed: disconnected.append(client_id) for client_id in disconnected: if client_id in st.session_state.active_connections[room_id]: del st.session_state.active_connections[room_id][client_id] async def run_websocket_server(): # ๐Ÿ–ฅ๏ธ Start WebSocket server if not st.session_state.server_running: server = await websockets.serve(websocket_handler, '0.0.0.0', 8765) st.session_state.server_running = True await server.wait_closed() # ๐Ÿ“š PDF to Audio class AudioProcessor: def __init__(self): self.cache_dir = AUDIO_CACHE_DIR os.makedirs(self.cache_dir, exist_ok=True) self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {} def _save_metadata(self): with open(f"{self.cache_dir}/metadata.json", 'w') as f: json.dump(self.metadata, f) async def create_audio(self, text, voice='en-US-AriaNeural'): # ๐ŸŽถ Generate cached audio cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest() cache_path = f"{self.cache_dir}/{cache_key}.mp3" if cache_key in self.metadata and os.path.exists(cache_path): return open(cache_path, 'rb').read() text = clean_text_for_tts(text) if not text: return None communicate = edge_tts.Communicate(text, voice) await communicate.save(cache_path) self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice} self._save_metadata() return open(cache_path, 'rb').read() def process_pdf(pdf_file, max_pages, voice, audio_processor): # ๐Ÿ“„ Convert PDF to audio reader = PdfReader(pdf_file) total_pages = min(len(reader.pages), max_pages) texts, audios = [], {} async def process_page(i, text): audios[i] = await audio_processor.create_audio(text, voice) for i in range(total_pages): text = reader.pages[i].extract_text() texts.append(text) threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start() return texts, audios, total_pages # ๐Ÿ” ArXiv & AI Lookup def parse_arxiv_refs(ref_text): # ๐Ÿ“œ Parse ArXiv refs into dicts if not ref_text: return [] papers = [] current = {} for line in ref_text.split('\n'): if line.count('|') == 2: if current: papers.append(current) date, title, *_ = line.strip('* ').split('|') url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}" current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': ''} elif current: if not current['authors']: current['authors'] = line.strip('* ') else: current['summary'] += ' ' + line.strip() if current['summary'] else line.strip() if current: papers.append(current) return papers[:20] def generate_5min_feature_markdown(paper): # โœจ 5-min research paper feature title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url'] pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "") wct, sw = len(title.split()), len(summary.split()) terms = get_high_info_terms(summary, 15) rouge = round((len(terms) / max(sw, 1)) * 100, 2) mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```" return f""" ## ๐Ÿ“„ {title} **Authors:** {authors} | **Date:** {date} | **Words:** Title: {wct}, Summary: {sw} **Links:** [Abstract]({url}) | [PDF]({pdf_url}) **Terms:** {', '.join(terms)} | **ROUGE:** {rouge}% ### ๐ŸŽค TTF Read Aloud - **Title:** {title} | **Terms:** {', '.join(terms)} | **ROUGE:** {rouge}% #### Concepts Graph {mermaid} --- """ def create_detailed_paper_md(papers): return "# Detailed Summary\n" + "\n".join(generate_5min_feature_markdown(p) for p in papers) async def create_paper_audio_files(papers, query): # ๐ŸŽง Generate paper audio for p in papers: audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}") p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice']) if p['full_audio']: p['download_base64'] = get_download_link(p['full_audio']) async def perform_ai_lookup(q, useArxiv=True, useArxivAudio=False): # ๐Ÿ”ฎ AI-powered research client = anthropic.Anthropic(api_key=anthropic_key) response = client.messages.create(model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role": "user", "content": q}]) result = response.content[0].text st.markdown("### Claude's Reply ๐Ÿง \n" + result) md_file = create_file(q, result) audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice']) play_and_download_audio(audio_file) if useArxiv: q += result gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") refs = gradio_client.predict(q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] result = f"๐Ÿ”Ž {q}\n\n{refs}" md_file, audio_file = create_file(q, result), (await async_edge_tts_generate(result, st.session_state['tts_voice']))[0] play_and_download_audio(audio_file) papers = parse_arxiv_refs(refs) if papers and useArxivAudio: await create_paper_audio_files(papers, q) return result, papers return result, [] # ๐Ÿ“ฆ Zip Files def create_zip_of_files(md_files, mp3_files, query): # ๐Ÿ“ฆ Zip it up all_files = md_files + mp3_files if not all_files: return None terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in all_files] + [query]), 5) zip_name = f"{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip" with zipfile.ZipFile(zip_name, 'w') as z: [z.write(f) for f in all_files] return zip_name # ๐ŸŽฎ Main Interface async def async_interface(): init_session_state() if not st.session_state.username: available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in (await load_chat()).split('\n'))] st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys())) st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username] await save_chat_entry("System ๐ŸŒŸ", f"{st.session_state.username} has joined {START_ROOM}!") st.title(f"๐Ÿค–๐Ÿง MMO Chat & Research for {st.session_state.username}๐Ÿ“๐Ÿ”ฌ") update_marquee_settings_ui() display_marquee(f"๐Ÿš€ Welcome to {START_ROOM} | ๐Ÿค– {st.session_state.username}", st.session_state['marquee_settings'], "welcome") if not st.session_state.server_task: st.session_state.server_task = asyncio.create_task(run_websocket_server()) tab_main = st.radio("Action:", ["๐ŸŽค Chat & Voice", "๐Ÿ“ธ Media", "๐Ÿ” ArXiv", "๐Ÿ“š PDF to Audio"], horizontal=True) useArxiv, useArxivAudio = st.checkbox("Search ArXiv", True), st.checkbox("ArXiv Audio", False) st.session_state.autosend = st.checkbox("Autosend Chat", value=True) st.session_state.autosearch = st.checkbox("Autosearch ArXiv", value=True) # ๐ŸŽค Chat & Voice if tab_main == "๐ŸŽค Chat & Voice": st.subheader(f"{START_ROOM} Chat ๐Ÿ’ฌ") chat_content = await load_chat() chat_container = st.container() with chat_container: st.markdown(chat_content) # Display numbered chat history message = st.text_input(f"Message as {st.session_state.username}", key="message_input") if message and message != st.session_state.last_message: st.session_state.last_message = message if st.session_state.autosend or st.button("Send ๐Ÿš€"): await save_chat_entry(st.session_state.username, message, True) st.rerun() st.subheader("๐ŸŽค Speech-to-Chat") speech_component = components.declare_component("speech_component", path="mycomponent") transcript_data = speech_component(default_value=st.session_state.get('last_transcript', '')) if transcript_data and 'value' in transcript_data: transcript = transcript_data['value'].strip() st.write(f"๐ŸŽ™๏ธ You said: {transcript}") if transcript and transcript != st.session_state.last_transcript: st.session_state.last_transcript = transcript if st.session_state.autosend: await save_chat_entry(st.session_state.username, transcript, True) st.rerun() elif st.button("Send to Chat"): await save_chat_entry(st.session_state.username, transcript, True) st.rerun() # ๐Ÿ“ธ Media elif tab_main == "๐Ÿ“ธ Media": st.header("๐Ÿ“ธ Media Gallery") tabs = st.tabs(["๐ŸŽต Audio", "๐Ÿ–ผ Images", "๐ŸŽฅ Video"]) with tabs[0]: for a in glob.glob(f"{MEDIA_DIR}/*.mp3"): with st.expander(os.path.basename(a)): play_and_download_audio(a) with tabs[1]: imgs = glob.glob(f"{MEDIA_DIR}/*.png") + glob.glob(f"{MEDIA_DIR}/*.jpg") if imgs: cols = st.columns(3) for i, f in enumerate(imgs): cols[i % 3].image(f, use_container_width=True) with tabs[2]: for v in glob.glob(f"{MEDIA_DIR}/*.mp4"): with st.expander(os.path.basename(v)): st.video(v) uploaded_file = st.file_uploader("Upload Media", type=['png', 'jpg', 'mp4', 'mp3']) if uploaded_file: filename = f"{format_timestamp_prefix(st.session_state.username)}-{hashlib.md5(uploaded_file.getbuffer()).hexdigest()[:8]}.{uploaded_file.name.split('.')[-1]}" with open(f"{MEDIA_DIR}/{filename}", 'wb') as f: f.write(uploaded_file.getbuffer()) await save_chat_entry(st.session_state.username, f"Uploaded: {filename}") st.rerun() # ๐Ÿ” ArXiv elif tab_main == "๐Ÿ” ArXiv": q = st.text_input("๐Ÿ” Query:", key="arxiv_query") if q and q != st.session_state.last_query: st.session_state.last_query = q if st.session_state.autosearch or st.button("๐Ÿ” Run"): result, papers = await perform_ai_lookup(q, useArxiv, useArxivAudio) for i, p in enumerate(papers, 1): with st.expander(f"{i}. ๐Ÿ“„ {p['title']}"): st.markdown(f"**{p['date']} | {p['title']}** โ€” [Link]({p['url']})") st.markdown(generate_5min_feature_markdown(p)) if p.get('full_audio'): play_and_download_audio(p['full_audio']) # ๐Ÿ“š PDF to Audio elif tab_main == "๐Ÿ“š PDF to Audio": audio_processor = AudioProcessor() pdf_file = st.file_uploader("Choose PDF", "pdf") max_pages = st.slider('Pages', 1, 100, 10) if pdf_file: with st.spinner('Processing...'): texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor) for i, text in enumerate(texts): with st.expander(f"Page {i+1}"): st.markdown(text) while i not in audios: time.sleep(0.1) if audios[i]: st.audio(audios[i], format='audio/mp3') st.markdown(get_download_link(io.BytesIO(audios[i]), "mp3"), unsafe_allow_html=True) # ๐Ÿ—‚๏ธ Sidebar st.sidebar.subheader("Voice Settings") new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username)) if new_username != st.session_state.username: await save_chat_entry("System ๐ŸŒŸ", f"{st.session_state.username} changed to {new_username}") st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username] st.rerun() md_files, mp3_files = glob.glob("*.md"), glob.glob("*.mp3") st.sidebar.markdown("### ๐Ÿ“‚ File History") for f in sorted(md_files + mp3_files, key=os.path.getmtime, reverse=True)[:10]: st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '๐Ÿ“„')} {os.path.basename(f)}") if st.sidebar.button("โฌ‡๏ธ Zip All"): zip_name = create_zip_of_files(md_files, mp3_files, "latest_query") if zip_name: st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True) def main(): # ๐ŸŽ‰ Kick it off asyncio.run(async_interface()) if __name__ == "__main__": main()