awacke1's picture
Update app.py
047b770
raw
history blame
4.57 kB
import streamlit as st
from graphviz import Digraph
import time
import random
# Define the emoji to use for the swim lanes
SWIM_LANES = {
"Data Pipelines": "๐Ÿ”",
"Build and Train Models": "๐Ÿงช",
"Deploy and Predict": "๐Ÿš€"
}
# Define the graph structure
graph = Digraph()
graph.attr(rankdir="TB") # Top to Bottom or LR Left to Right
graph.attr(fontsize="20")
graph.attr(compound="true")
graph.attr(nodesep="0.5")
# Define the nodes
graph.node("๐Ÿ“Š Data Collection")
graph.node("๐Ÿงน Data Cleaning")
graph.node("๐Ÿ”ง Data Transformation")
graph.node("๐Ÿ”Ž Feature Engineering")
graph.node("โš™๏ธ Model Selection")
graph.node("๐ŸŽ“ Model Training")
graph.node("๐Ÿšข Model Deployment")
graph.node("๐Ÿ“ก Model Serving")
graph.node("๐Ÿ”ฎ Predictions")
graph.node("๐Ÿ‘ Feedback Collection")
graph.node("๐Ÿค” Feedback Processing")
graph.node("โœ๏ธ Model Updating")
# Add the edges
graph.edge("๐Ÿ“Š Data Collection", "๐Ÿงน Data Cleaning")
graph.edge("๐Ÿงน Data Cleaning", "๐Ÿ”ง Data Transformation")
graph.edge("๐Ÿ”ง Data Transformation", "๐Ÿ”Ž Feature Engineering")
graph.edge("๐Ÿ”Ž Feature Engineering", "โš™๏ธ Model Selection")
graph.edge("โš™๏ธ Model Selection", "๐ŸŽ“ Model Training")
graph.edge("๐ŸŽ“ Model Training", "๐Ÿšข Model Deployment")
graph.edge("๐Ÿšข Model Deployment", "๐Ÿ“ก Model Serving")
graph.edge("๐Ÿ“ก Model Serving", "๐Ÿ”ฎ Predictions")
graph.edge("๐Ÿ”ฎ Predictions", "๐Ÿ‘ Feedback Collection")
graph.edge("๐Ÿ‘ Feedback Collection", "๐Ÿค” Feedback Processing")
graph.edge("๐Ÿค” Feedback Processing", "โœ๏ธ Model Updating")
graph.edge("โœ๏ธ Model Updating", "๐ŸŽ“ Model Training")
# Add the swim lanes
with graph.subgraph(name="cluster_0") as c:
c.attr(rank="1")
c.attr(label=SWIM_LANES["Data Pipelines"])
c.edge("๐Ÿ“Š Data Collection", "๐Ÿงน Data Cleaning", style="invis")
c.edge("๐Ÿงน Data Cleaning", "๐Ÿ”ง Data Transformation", style="invis")
with graph.subgraph(name="cluster_1") as c:
c.attr(rank="2")
c.attr(label=SWIM_LANES["Build and Train Models"])
c.edge("๐Ÿ”Ž Feature Engineering", "โš™๏ธ Model Selection", style="invis")
c.edge("โš™๏ธ Model Selection", "๐ŸŽ“ Model Training", style="invis")
with graph.subgraph(name="cluster_2") as c:
c.attr(rank="3")
c.attr(label=SWIM_LANES["Deploy and Predict"])
c.edge("๐Ÿšข Model Deployment", "๐Ÿ“ก Model Serving", style="invis")
c.edge("๐Ÿ“ก Model Serving", "๐Ÿ”ฎ Predictions", style="invis")
with graph.subgraph(name="cluster_3") as c:
c.attr(rank="4")
c.attr(label="Reinforcement Learning Human Feedback")
c.edge("๐Ÿ”ฎ Predictions", "๐Ÿ‘ Feedback Collection", style="invis")
c.edge("๐Ÿ‘ Feedback Collection", "๐Ÿค” Feedback Processing", style="invis")
c.edge("๐Ÿค” Feedback Processing", "โœ๏ธ Model Updating", style="invis")
def render_graph():
st.graphviz_chart(graph.source)
def update_graph():
for i in range(10):
# Update the graph with new inputs randomly
graph.node("๐Ÿ“Š Data Collection", label=f"๐Ÿ“Š Data Collection\nData {random.randint(0,100)}")
graph.node("๐Ÿงน Data Cleaning", label=f"๐Ÿงน Data Cleaning\nCleaned Data {random.randint(0,100)}")
graph.node("๐Ÿ”ง Data Transformation", label=f"๐Ÿ”ง Data Transformation\nTransformed Data {random.randint(0,100)}")
graph.node("๐Ÿ”Ž Feature Engineering", label=f"๐Ÿ”Ž Feature Engineering\nFeatures {random.randint(0,100)}")
graph.node("โš™๏ธ Model Selection", label=f"โš™๏ธ Model Selection\nSelected Model {random.randint(0,100)}")
graph.node("๐ŸŽ“ Model Training", label=f"๐ŸŽ“ Model Training\nTrained Model {random.randint(0,100)}")
graph.node("๐Ÿšข Model Deployment", label=f"๐Ÿšข Model Deployment\nDeployed Model {random.randint(0,100)}")
graph.node("๐Ÿ“ก Model Serving", label=f"๐Ÿ“ก Model Serving\nServed Model {random.randint(0,100)}")
graph.node("๐Ÿ”ฎ Predictions", label=f"๐Ÿ”ฎ Predictions\nPredicted Results {random.randint(0,100)}")
graph.node("๐Ÿ‘ Feedback Collection", label=f"๐Ÿ‘ Feedback Collection\nFeedback {random.randint(0,100)}")
graph.node("๐Ÿค” Feedback Processing", label=f"๐Ÿค” Feedback Processing\nProcessed Feedback {random.randint(0,100)}")
graph.node("โœ๏ธ Model Updating", label=f"โœ๏ธ Model Updating\nUpdated Model {random.randint(0,100)}")
# Render the updated graph
render_graph()
# Wait for 1 second
time.sleep(1)
# Render the initial graph
render_graph()
# Update the graph every second for 60 seconds
update_graph()