Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -4,60 +4,84 @@ import random
|
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
|
7 |
-
def
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
{
|
15 |
-
{
|
16 |
-
|
17 |
-
|
18 |
-
{"condition": "𦴠Osteoarthritis and joint disorders", "emoji": "π₯", "spending": 142.4, "treatment": "Low-impact exercise and physical therapy", "savings": "$800"},
|
19 |
-
{"condition": "π Diabetes", "emoji": "π©Έ", "spending": 107.4, "treatment": "Regular checkups and medication", "savings": "$1200"},
|
20 |
-
{"condition": "π« Chronic obstructive pulmonary disease and asthma", "emoji": "π«", "spending": 91.0, "treatment": "Inhalers and breathing exercises", "savings": "$600"},
|
21 |
-
{"condition": "π©Ί Hypertension", "emoji": "π", "spending": 83.9, "treatment": "Lifestyle changes and medication", "savings": "$900"},
|
22 |
-
{"condition": "π¬ Hyperlipidemia", "emoji": "π¬", "spending": 83.9, "treatment": "Lifestyle changes and medication", "savings": "$700"},
|
23 |
-
{"condition": "𦴠Back problems", "emoji": "π§", "spending": 67.0, "treatment": "Physical therapy and exercise", "savings": "$400"}
|
24 |
-
]
|
25 |
-
|
26 |
-
# Create a DataFrame from the list dictionary
|
27 |
-
df_top_conditions = pd.DataFrame(health_conditions)
|
28 |
-
|
29 |
-
# Calculate the total spending
|
30 |
-
total_spending = round(df_top_conditions["spending"].sum(), 1)
|
31 |
-
|
32 |
-
# Define the roll function
|
33 |
-
def roll():
|
34 |
-
rolls = [random.randint(1, 10) for _ in range(1000)]
|
35 |
-
frequencies = [rolls.count(i) for i in range(1, 11)]
|
36 |
-
return frequencies
|
37 |
-
|
38 |
-
# Define the sunburst chart
|
39 |
-
fig_sunburst = go.Figure(go.Sunburst(
|
40 |
-
labels=df_top_conditions["emoji"] + " " + df_top_conditions["condition"],
|
41 |
-
parents=[""] * top_n,
|
42 |
-
values=df_top_conditions["spending"],
|
43 |
-
maxdepth=2
|
44 |
))
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
# Display the sunburst chart and variants per condition in the Streamlit app
|
51 |
st.plotly_chart(fig_sunburst)
|
52 |
-
condition_idx = st.selectbox("Select your current health condition", df_top_conditions.index)
|
53 |
-
row = df_top_conditions.loc[condition_idx]
|
54 |
|
55 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
frequencies = roll()
|
58 |
-
fig_bar = px.bar(x=[f"Variant {i}" for i in range(1, 11)], y=frequencies[:10], labels={'x': 'Variant', 'y': 'Frequency'})
|
59 |
-
fig_bar.update_layout(title=f"Variants of {row['condition']} ({row['emoji']})")
|
60 |
st.plotly_chart(fig_bar)
|
61 |
|
|
|
|
|
62 |
|
63 |
-
health_game()
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
|
7 |
+
def generate_health_conditions():
|
8 |
+
return [
|
9 |
+
{"condition": "π Heart disease", "emoji": "π", "spending": {"Minnesota": 100, "Florida": 150, "California": 200, "New York": 120, "Texas": 180}, "treatment": "Regular checkups with a cardiologist", "savings": "$1000"},
|
10 |
+
{"condition": "π€ Trauma-related disorders", "emoji": "π", "spending": {"Minnesota": 90, "Florida": 110, "California": 150, "New York": 100, "Texas": 130}, "treatment": "Counseling and physical therapy", "savings": "$500"},
|
11 |
+
{"condition": "π¦ Cancer", "emoji": "ποΈ", "spending": {"Minnesota": 80, "Florida": 120, "California": 180, "New York": 100, "Texas": 150}, "treatment": "Early detection and treatment", "savings": "$2000"},
|
12 |
+
{"condition": "π§ Mental disorders", "emoji": "π§", "spending": {"Minnesota": 70, "Florida": 100, "California": 140, "New York": 90, "Texas": 120}, "treatment": "Therapy and medication", "savings": "$1500"},
|
13 |
+
{"condition": "𦴠Osteoarthritis and joint disorders", "emoji": "π₯", "spending": {"Minnesota": 60, "Florida": 90, "California": 120, "New York": 80, "Texas": 100}, "treatment": "Low-impact exercise and physical therapy", "savings": "$800"},
|
14 |
+
{"condition": "π Diabetes", "emoji": "π©Έ", "spending": {"Minnesota": 50, "Florida": 80, "California": 100, "New York": 60, "Texas": 90}, "treatment": "Regular checkups and medication", "savings": "$1200"},
|
15 |
+
{"condition": "π« Chronic obstructive pulmonary disease and asthma", "emoji": "π«", "spending": {"Minnesota": 40, "Florida": 70, "California": 90, "New York": 50, "Texas": 80}, "treatment": "Inhalers and breathing exercises", "savings": "$600"},
|
16 |
+
{"condition": "π©Ί Hypertension", "emoji": "π", "spending": {"Minnesota": 30, "Florida": 60, "California": 80, "New York": 40, "Texas": 70}, "treatment": "Lifestyle changes and medication", "savings": "$900"},
|
17 |
+
{"condition": "π¬ Hyperlipidemia", "emoji": "π¬", "spending": {"Minnesota": 20, "Florida": 50, "California": 70, "New York": 30, "Texas": 60}, "treatment": "Lifestyle changes and medication", "savings": "$700"},
|
18 |
+
{"condition": "𦴠Back problems", "emoji": "π§", "spending": {"Minnesota": 10, "Florida": 40,
|
19 |
+
|
20 |
+
def calculate_total_spending(health_conditions):
|
21 |
+
total_spending = 0
|
22 |
+
for condition in health_conditions:
|
23 |
+
for state, spending in condition["spending"].items():
|
24 |
+
total_spending += spending
|
25 |
+
return round(total_spending, 1)
|
26 |
|
27 |
+
def generate_sunburst_chart(health_conditions, total_spending):
|
28 |
+
fig_sunburst = go.Figure(go.Treemap(
|
29 |
+
labels=[f"{condition['emoji']} {condition['condition']} ({state})" for condition in health_conditions for state in condition['spending'].keys()],
|
30 |
+
parents=[f"{condition['condition']} ({state})" for condition in health_conditions for state in condition['spending'].keys()],
|
31 |
+
values=[spending for condition in health_conditions for spending in condition['spending'].values()],
|
32 |
+
branchvalues="total",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
))
|
34 |
|
35 |
+
fig_sunburst.update_layout(
|
36 |
+
title=f"Top Health Conditions in Different States by Spending (Total: ${total_spending}B)",
|
37 |
+
margin=dict(l=0, r=0, t=50, b=0),
|
38 |
+
)
|
39 |
+
return fig_sunburst
|
40 |
+
|
41 |
+
def roll(state, condition):
|
42 |
+
frequencies = [random.randint(1, 10) for _ in range(1000)]
|
43 |
+
spending = condition["spending"][state]
|
44 |
+
frequencies = [round(frequency * spending / 100, 1) for frequency in frequencies]
|
45 |
+
return frequencies
|
46 |
+
|
47 |
+
def generate_bar_chart(state, condition, frequencies):
|
48 |
+
fig_bar = px.bar(
|
49 |
+
x=[f"Variant {i}" for i in range(1, 11)],
|
50 |
+
y=frequencies[:10],
|
51 |
+
labels={'x': 'Variant', 'y': 'Cost'},
|
52 |
+
title=f"Variants of {condition['condition']} ({condition['emoji']}) in {state}",
|
53 |
+
)
|
54 |
+
return fig_bar
|
55 |
+
|
56 |
+
def generate_recommendation(condition):
|
57 |
+
return f"Based on the severity of your {condition['condition']}, we recommend {condition['treatment']} for early treatment. This could save you up to {condition['savings']} in healthcare costs."
|
58 |
+
|
59 |
+
def main():
|
60 |
+
states = ["Minnesota", "Florida", "California", "New York", "Texas"]
|
61 |
+
top_n = 10
|
62 |
+
|
63 |
+
health_conditions = generate_health_conditions()
|
64 |
+
|
65 |
+
total_spending = calculate_total_spending(health_conditions)
|
66 |
+
|
67 |
+
fig_sunburst = generate_sunburst_chart(health_conditions, total_spending)
|
68 |
|
|
|
69 |
st.plotly_chart(fig_sunburst)
|
|
|
|
|
70 |
|
71 |
+
condition_idx = st.selectbox("Select your current health condition", range(top_n))
|
72 |
+
|
73 |
+
condition = health_conditions[condition_idx]
|
74 |
+
|
75 |
+
st.write(generate_recommendation(condition))
|
76 |
+
|
77 |
+
state = st.selectbox("Select your state", states)
|
78 |
+
|
79 |
+
frequencies = roll(state, condition)
|
80 |
+
|
81 |
+
fig_bar = generate_bar_chart(state, condition, frequencies)
|
82 |
|
|
|
|
|
|
|
83 |
st.plotly_chart(fig_bar)
|
84 |
|
85 |
+
if __name__ == "__main__":
|
86 |
+
main()
|
87 |
|
|