import streamlit as st from graphviz import Digraph import time import random # Define the emoji to use for the swim lanes SWIM_LANES = { "Data Pipelines": "๐Ÿ”", "Build and Train Models": "๐Ÿงช", "Deploy and Predict": "๐Ÿš€" } # Define the graph structure graph = Digraph() graph.attr(rankdir="TB") # Top to Bottom or LR Left to Right graph.attr(fontsize="20") graph.attr(compound="true") graph.attr(nodesep="0.5") # Define the nodes nodes = [ "๐Ÿ“Š Data Collection", "๐Ÿงน Data Cleaning", "๐Ÿ”ง Data Transformation", "๐Ÿ”Ž Feature Engineering", "โš™๏ธ Model Selection", "๐ŸŽ“ Model Training", "๐Ÿšข Model Deployment", "๐Ÿ“ก Model Serving", "๐Ÿ”ฎ Predictions", "๐Ÿ‘ Feedback Collection", "๐Ÿค” Feedback Processing", "โœ๏ธ Model Updating" ] for node in nodes: graph.node(node) # Add the swim lanes with graph.subgraph(name="cluster_0") as c: c.attr(rank="1") c.attr(label=SWIM_LANES["Data Pipelines"]) c.edge("๐Ÿ“Š Data Collection", "๐Ÿงน Data Cleaning", style="invis") c.edge("๐Ÿงน Data Cleaning", "๐Ÿ”ง Data Transformation", style="invis") with graph.subgraph(name="cluster_1") as c: c.attr(rank="2") c.attr(label=SWIM_LANES["Build and Train Models"]) c.edge("๐Ÿ”Ž Feature Engineering", "โš™๏ธ Model Selection", style="invis") c.edge("โš™๏ธ Model Selection", "๐ŸŽ“ Model Training", style="invis") with graph.subgraph(name="cluster_2") as c: c.attr(rank="3") c.attr(label=SWIM_LANES["Deploy and Predict"]) c.edge("๐Ÿšข Model Deployment", "๐Ÿ“ก Model Serving", style="invis") c.edge("๐Ÿ“ก Model Serving", "๐Ÿ”ฎ Predictions", style="invis") with graph.subgraph(name="cluster_3") as c: c.attr(rank="4") c.attr(label="Reinforcement Learning Human Feedback") c.edge("๐Ÿ”ฎ Predictions", "๐Ÿ‘ Feedback Collection", style="invis") c.edge("๐Ÿ‘ Feedback Collection", "๐Ÿค” Feedback Processing", style="invis") c.edge("๐Ÿค” Feedback Processing", "โœ๏ธ Model Updating", style="invis") def render_graph(): st.graphviz_chart(graph.source) def update_graph(): for i in range(10): # Randomly select two nodes and add an edge between them node1, node2 = random.sample(nodes, 2) graph.edge(node1, node2) # Render the updated graph render_graph() # Wait for 1 second time.sleep(1) # Render the initial graph render_graph() # Update the graph every second for 60 seconds update_graph()