Spaces:
Runtime error
Runtime error
| from abc import ABC, abstractmethod | |
| from typing import Tuple | |
| import torch | |
| class DenoiserScaling(ABC): | |
| def __call__( | |
| self, sigma: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| pass | |
| class EDMScaling: | |
| def __init__(self, sigma_data: float = 0.5): | |
| self.sigma_data = sigma_data | |
| def __call__( | |
| self, sigma: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2) | |
| c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2) ** 0.5 | |
| c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5 | |
| c_noise = 0.25 * sigma.log() | |
| return c_skip, c_out, c_in, c_noise | |
| class EpsScaling: | |
| def __call__( | |
| self, sigma: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| c_skip = torch.ones_like(sigma, device=sigma.device) | |
| c_out = -sigma | |
| c_in = 1 / (sigma**2 + 1.0) ** 0.5 | |
| c_noise = sigma.clone() | |
| return c_skip, c_out, c_in, c_noise | |
| class VScaling: | |
| def __call__( | |
| self, sigma: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| c_skip = 1.0 / (sigma**2 + 1.0) | |
| c_out = -sigma / (sigma**2 + 1.0) ** 0.5 | |
| c_in = 1.0 / (sigma**2 + 1.0) ** 0.5 | |
| c_noise = sigma.clone() | |
| return c_skip, c_out, c_in, c_noise | |
| class VScalingWithEDMcNoise(DenoiserScaling): | |
| def __call__( | |
| self, sigma: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| c_skip = 1.0 / (sigma**2 + 1.0) | |
| c_out = -sigma / (sigma**2 + 1.0) ** 0.5 | |
| c_in = 1.0 / (sigma**2 + 1.0) ** 0.5 | |
| c_noise = 0.25 * sigma.log() | |
| return c_skip, c_out, c_in, c_noise | |