Spaces:
Runtime error
Runtime error
| # pytorch_diffusion + derived encoder decoder | |
| import logging | |
| import math | |
| from typing import Any, Callable, Optional | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from packaging import version | |
| logpy = logging.getLogger(__name__) | |
| try: | |
| import xformers | |
| import xformers.ops | |
| XFORMERS_IS_AVAILABLE = True | |
| except: | |
| XFORMERS_IS_AVAILABLE = False | |
| logpy.warning("no module 'xformers'. Processing without...") | |
| from ...modules.attention import LinearAttention, MemoryEfficientCrossAttention | |
| def get_timestep_embedding(timesteps, embedding_dim): | |
| """ | |
| This matches the implementation in Denoising Diffusion Probabilistic Models: | |
| From Fairseq. | |
| Build sinusoidal embeddings. | |
| This matches the implementation in tensor2tensor, but differs slightly | |
| from the description in Section 3.5 of "Attention Is All You Need". | |
| """ | |
| assert len(timesteps.shape) == 1 | |
| half_dim = embedding_dim // 2 | |
| emb = math.log(10000) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
| emb = emb.to(device=timesteps.device) | |
| emb = timesteps.float()[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
| return emb | |
| def nonlinearity(x): | |
| # swish | |
| return x * torch.sigmoid(x) | |
| def Normalize(in_channels, num_groups=32): | |
| return torch.nn.GroupNorm( | |
| num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| class Upsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| self.conv = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| def forward(self, x): | |
| x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
| if self.with_conv: | |
| x = self.conv(x) | |
| return x | |
| class Downsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| # no asymmetric padding in torch conv, must do it ourselves | |
| self.conv = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
| ) | |
| def forward(self, x): | |
| if self.with_conv: | |
| pad = (0, 1, 0, 1) | |
| x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
| x = self.conv(x) | |
| else: | |
| x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
| return x | |
| class ResnetBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| in_channels, | |
| out_channels=None, | |
| conv_shortcut=False, | |
| dropout, | |
| temb_channels=512, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.norm1 = Normalize(in_channels) | |
| self.conv1 = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| if temb_channels > 0: | |
| self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
| self.norm2 = Normalize(out_channels) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = torch.nn.Conv2d( | |
| out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| else: | |
| self.nin_shortcut = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward(self, x, temb): | |
| h = x | |
| h = self.norm1(h) | |
| h = nonlinearity(h) | |
| h = self.conv1(h) | |
| if temb is not None: | |
| h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] | |
| h = self.norm2(h) | |
| h = nonlinearity(h) | |
| h = self.dropout(h) | |
| h = self.conv2(h) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| x = self.conv_shortcut(x) | |
| else: | |
| x = self.nin_shortcut(x) | |
| return x + h | |
| class LinAttnBlock(LinearAttention): | |
| """to match AttnBlock usage""" | |
| def __init__(self, in_channels): | |
| super().__init__(dim=in_channels, heads=1, dim_head=in_channels) | |
| class AttnBlock(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.k = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.v = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.proj_out = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def attention(self, h_: torch.Tensor) -> torch.Tensor: | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| b, c, h, w = q.shape | |
| q, k, v = map( | |
| lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v) | |
| ) | |
| h_ = torch.nn.functional.scaled_dot_product_attention( | |
| q, k, v | |
| ) # scale is dim ** -0.5 per default | |
| # compute attention | |
| return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) | |
| def forward(self, x, **kwargs): | |
| h_ = x | |
| h_ = self.attention(h_) | |
| h_ = self.proj_out(h_) | |
| return x + h_ | |
| class MemoryEfficientAttnBlock(nn.Module): | |
| """ | |
| Uses xformers efficient implementation, | |
| see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
| Note: this is a single-head self-attention operation | |
| """ | |
| # | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.k = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.v = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.proj_out = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.attention_op: Optional[Any] = None | |
| def attention(self, h_: torch.Tensor) -> torch.Tensor: | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| B, C, H, W = q.shape | |
| q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) | |
| q, k, v = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(B, t.shape[1], 1, C) | |
| .permute(0, 2, 1, 3) | |
| .reshape(B * 1, t.shape[1], C) | |
| .contiguous(), | |
| (q, k, v), | |
| ) | |
| out = xformers.ops.memory_efficient_attention( | |
| q, k, v, attn_bias=None, op=self.attention_op | |
| ) | |
| out = ( | |
| out.unsqueeze(0) | |
| .reshape(B, 1, out.shape[1], C) | |
| .permute(0, 2, 1, 3) | |
| .reshape(B, out.shape[1], C) | |
| ) | |
| return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) | |
| def forward(self, x, **kwargs): | |
| h_ = x | |
| h_ = self.attention(h_) | |
| h_ = self.proj_out(h_) | |
| return x + h_ | |
| class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): | |
| def forward(self, x, context=None, mask=None, **unused_kwargs): | |
| b, c, h, w = x.shape | |
| x = rearrange(x, "b c h w -> b (h w) c") | |
| out = super().forward(x, context=context, mask=mask) | |
| out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c) | |
| return x + out | |
| def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): | |
| assert attn_type in [ | |
| "vanilla", | |
| "vanilla-xformers", | |
| "memory-efficient-cross-attn", | |
| "linear", | |
| "none", | |
| ], f"attn_type {attn_type} unknown" | |
| if ( | |
| version.parse(torch.__version__) < version.parse("2.0.0") | |
| and attn_type != "none" | |
| ): | |
| assert XFORMERS_IS_AVAILABLE, ( | |
| f"We do not support vanilla attention in {torch.__version__} anymore, " | |
| f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'" | |
| ) | |
| attn_type = "vanilla-xformers" | |
| logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
| if attn_type == "vanilla": | |
| assert attn_kwargs is None | |
| return AttnBlock(in_channels) | |
| elif attn_type == "vanilla-xformers": | |
| logpy.info( | |
| f"building MemoryEfficientAttnBlock with {in_channels} in_channels..." | |
| ) | |
| return MemoryEfficientAttnBlock(in_channels) | |
| elif type == "memory-efficient-cross-attn": | |
| attn_kwargs["query_dim"] = in_channels | |
| return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) | |
| elif attn_type == "none": | |
| return nn.Identity(in_channels) | |
| else: | |
| return LinAttnBlock(in_channels) | |
| class Model(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| ch, | |
| out_ch, | |
| ch_mult=(1, 2, 4, 8), | |
| num_res_blocks, | |
| attn_resolutions, | |
| dropout=0.0, | |
| resamp_with_conv=True, | |
| in_channels, | |
| resolution, | |
| use_timestep=True, | |
| use_linear_attn=False, | |
| attn_type="vanilla", | |
| ): | |
| super().__init__() | |
| if use_linear_attn: | |
| attn_type = "linear" | |
| self.ch = ch | |
| self.temb_ch = self.ch * 4 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.use_timestep = use_timestep | |
| if self.use_timestep: | |
| # timestep embedding | |
| self.temb = nn.Module() | |
| self.temb.dense = nn.ModuleList( | |
| [ | |
| torch.nn.Linear(self.ch, self.temb_ch), | |
| torch.nn.Linear(self.temb_ch, self.temb_ch), | |
| ] | |
| ) | |
| # downsampling | |
| self.conv_in = torch.nn.Conv2d( | |
| in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| curr_res = resolution | |
| in_ch_mult = (1,) + tuple(ch_mult) | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch * in_ch_mult[i_level] | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append( | |
| ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions - 1: | |
| down.downsample = Downsample(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
| self.mid.block_2 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch * ch_mult[i_level] | |
| skip_in = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks + 1): | |
| if i_block == self.num_res_blocks: | |
| skip_in = ch * in_ch_mult[i_level] | |
| block.append( | |
| ResnetBlock( | |
| in_channels=block_in + skip_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d( | |
| block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| def forward(self, x, t=None, context=None): | |
| # assert x.shape[2] == x.shape[3] == self.resolution | |
| if context is not None: | |
| # assume aligned context, cat along channel axis | |
| x = torch.cat((x, context), dim=1) | |
| if self.use_timestep: | |
| # timestep embedding | |
| assert t is not None | |
| temb = get_timestep_embedding(t, self.ch) | |
| temb = self.temb.dense[0](temb) | |
| temb = nonlinearity(temb) | |
| temb = self.temb.dense[1](temb) | |
| else: | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions - 1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks + 1): | |
| h = self.up[i_level].block[i_block]( | |
| torch.cat([h, hs.pop()], dim=1), temb | |
| ) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| def get_last_layer(self): | |
| return self.conv_out.weight | |
| class Encoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| ch, | |
| out_ch, | |
| ch_mult=(1, 2, 4, 8), | |
| num_res_blocks, | |
| attn_resolutions, | |
| dropout=0.0, | |
| resamp_with_conv=True, | |
| in_channels, | |
| resolution, | |
| z_channels, | |
| double_z=True, | |
| use_linear_attn=False, | |
| attn_type="vanilla", | |
| **ignore_kwargs, | |
| ): | |
| super().__init__() | |
| if use_linear_attn: | |
| attn_type = "linear" | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| # downsampling | |
| self.conv_in = torch.nn.Conv2d( | |
| in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| curr_res = resolution | |
| in_ch_mult = (1,) + tuple(ch_mult) | |
| self.in_ch_mult = in_ch_mult | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch * in_ch_mult[i_level] | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append( | |
| ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions - 1: | |
| down.downsample = Downsample(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
| self.mid.block_2 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d( | |
| block_in, | |
| 2 * z_channels if double_z else z_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| ) | |
| def forward(self, x): | |
| # timestep embedding | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions - 1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class Decoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| ch, | |
| out_ch, | |
| ch_mult=(1, 2, 4, 8), | |
| num_res_blocks, | |
| attn_resolutions, | |
| dropout=0.0, | |
| resamp_with_conv=True, | |
| in_channels, | |
| resolution, | |
| z_channels, | |
| give_pre_end=False, | |
| tanh_out=False, | |
| use_linear_attn=False, | |
| attn_type="vanilla", | |
| **ignorekwargs, | |
| ): | |
| super().__init__() | |
| if use_linear_attn: | |
| attn_type = "linear" | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.give_pre_end = give_pre_end | |
| self.tanh_out = tanh_out | |
| # compute in_ch_mult, block_in and curr_res at lowest res | |
| in_ch_mult = (1,) + tuple(ch_mult) | |
| block_in = ch * ch_mult[self.num_resolutions - 1] | |
| curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
| self.z_shape = (1, z_channels, curr_res, curr_res) | |
| logpy.info( | |
| "Working with z of shape {} = {} dimensions.".format( | |
| self.z_shape, np.prod(self.z_shape) | |
| ) | |
| ) | |
| make_attn_cls = self._make_attn() | |
| make_resblock_cls = self._make_resblock() | |
| make_conv_cls = self._make_conv() | |
| # z to block_in | |
| self.conv_in = torch.nn.Conv2d( | |
| z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
| ) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = make_resblock_cls( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type) | |
| self.mid.block_2 = make_resblock_cls( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks + 1): | |
| block.append( | |
| make_resblock_cls( | |
| in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn_cls(block_in, attn_type=attn_type)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = make_conv_cls( | |
| block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| def _make_attn(self) -> Callable: | |
| return make_attn | |
| def _make_resblock(self) -> Callable: | |
| return ResnetBlock | |
| def _make_conv(self) -> Callable: | |
| return torch.nn.Conv2d | |
| def get_last_layer(self, **kwargs): | |
| return self.conv_out.weight | |
| def forward(self, z, **kwargs): | |
| # assert z.shape[1:] == self.z_shape[1:] | |
| self.last_z_shape = z.shape | |
| # timestep embedding | |
| temb = None | |
| # z to block_in | |
| h = self.conv_in(z) | |
| # middle | |
| h = self.mid.block_1(h, temb, **kwargs) | |
| h = self.mid.attn_1(h, **kwargs) | |
| h = self.mid.block_2(h, temb, **kwargs) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks + 1): | |
| h = self.up[i_level].block[i_block](h, temb, **kwargs) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h, **kwargs) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| if self.give_pre_end: | |
| return h | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h, **kwargs) | |
| if self.tanh_out: | |
| h = torch.tanh(h) | |
| return h | |