Spaces:
Runtime error
Runtime error
| """ | |
| partially adopted from | |
| https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
| and | |
| https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
| and | |
| https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py | |
| thanks! | |
| """ | |
| import math | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange, repeat | |
| def make_beta_schedule( | |
| schedule, | |
| n_timestep, | |
| linear_start=1e-4, | |
| linear_end=2e-2, | |
| ): | |
| if schedule == "linear": | |
| betas = ( | |
| torch.linspace( | |
| linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 | |
| ) | |
| ** 2 | |
| ) | |
| return betas.numpy() | |
| def extract_into_tensor(a, t, x_shape): | |
| b, *_ = t.shape | |
| out = a.gather(-1, t) | |
| return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
| def mixed_checkpoint(func, inputs: dict, params, flag): | |
| """ | |
| Evaluate a function without caching intermediate activations, allowing for | |
| reduced memory at the expense of extra compute in the backward pass. This differs from the original checkpoint function | |
| borrowed from https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py in that | |
| it also works with non-tensor inputs | |
| :param func: the function to evaluate. | |
| :param inputs: the argument dictionary to pass to `func`. | |
| :param params: a sequence of parameters `func` depends on but does not | |
| explicitly take as arguments. | |
| :param flag: if False, disable gradient checkpointing. | |
| """ | |
| if flag: | |
| tensor_keys = [key for key in inputs if isinstance(inputs[key], torch.Tensor)] | |
| tensor_inputs = [ | |
| inputs[key] for key in inputs if isinstance(inputs[key], torch.Tensor) | |
| ] | |
| non_tensor_keys = [ | |
| key for key in inputs if not isinstance(inputs[key], torch.Tensor) | |
| ] | |
| non_tensor_inputs = [ | |
| inputs[key] for key in inputs if not isinstance(inputs[key], torch.Tensor) | |
| ] | |
| args = tuple(tensor_inputs) + tuple(non_tensor_inputs) + tuple(params) | |
| return MixedCheckpointFunction.apply( | |
| func, | |
| len(tensor_inputs), | |
| len(non_tensor_inputs), | |
| tensor_keys, | |
| non_tensor_keys, | |
| *args, | |
| ) | |
| else: | |
| return func(**inputs) | |
| class MixedCheckpointFunction(torch.autograd.Function): | |
| def forward( | |
| ctx, | |
| run_function, | |
| length_tensors, | |
| length_non_tensors, | |
| tensor_keys, | |
| non_tensor_keys, | |
| *args, | |
| ): | |
| ctx.end_tensors = length_tensors | |
| ctx.end_non_tensors = length_tensors + length_non_tensors | |
| ctx.gpu_autocast_kwargs = { | |
| "enabled": torch.is_autocast_enabled(), | |
| "dtype": torch.get_autocast_gpu_dtype(), | |
| "cache_enabled": torch.is_autocast_cache_enabled(), | |
| } | |
| assert ( | |
| len(tensor_keys) == length_tensors | |
| and len(non_tensor_keys) == length_non_tensors | |
| ) | |
| ctx.input_tensors = { | |
| key: val for (key, val) in zip(tensor_keys, list(args[: ctx.end_tensors])) | |
| } | |
| ctx.input_non_tensors = { | |
| key: val | |
| for (key, val) in zip( | |
| non_tensor_keys, list(args[ctx.end_tensors : ctx.end_non_tensors]) | |
| ) | |
| } | |
| ctx.run_function = run_function | |
| ctx.input_params = list(args[ctx.end_non_tensors :]) | |
| with torch.no_grad(): | |
| output_tensors = ctx.run_function( | |
| **ctx.input_tensors, **ctx.input_non_tensors | |
| ) | |
| return output_tensors | |
| def backward(ctx, *output_grads): | |
| # additional_args = {key: ctx.input_tensors[key] for key in ctx.input_tensors if not isinstance(ctx.input_tensors[key],torch.Tensor)} | |
| ctx.input_tensors = { | |
| key: ctx.input_tensors[key].detach().requires_grad_(True) | |
| for key in ctx.input_tensors | |
| } | |
| with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): | |
| # Fixes a bug where the first op in run_function modifies the | |
| # Tensor storage in place, which is not allowed for detach()'d | |
| # Tensors. | |
| shallow_copies = { | |
| key: ctx.input_tensors[key].view_as(ctx.input_tensors[key]) | |
| for key in ctx.input_tensors | |
| } | |
| # shallow_copies.update(additional_args) | |
| output_tensors = ctx.run_function(**shallow_copies, **ctx.input_non_tensors) | |
| input_grads = torch.autograd.grad( | |
| output_tensors, | |
| list(ctx.input_tensors.values()) + ctx.input_params, | |
| output_grads, | |
| allow_unused=True, | |
| ) | |
| del ctx.input_tensors | |
| del ctx.input_params | |
| del output_tensors | |
| return ( | |
| (None, None, None, None, None) | |
| + input_grads[: ctx.end_tensors] | |
| + (None,) * (ctx.end_non_tensors - ctx.end_tensors) | |
| + input_grads[ctx.end_tensors :] | |
| ) | |
| def checkpoint(func, inputs, params, flag): | |
| """ | |
| Evaluate a function without caching intermediate activations, allowing for | |
| reduced memory at the expense of extra compute in the backward pass. | |
| :param func: the function to evaluate. | |
| :param inputs: the argument sequence to pass to `func`. | |
| :param params: a sequence of parameters `func` depends on but does not | |
| explicitly take as arguments. | |
| :param flag: if False, disable gradient checkpointing. | |
| """ | |
| if flag: | |
| args = tuple(inputs) + tuple(params) | |
| return CheckpointFunction.apply(func, len(inputs), *args) | |
| else: | |
| return func(*inputs) | |
| class CheckpointFunction(torch.autograd.Function): | |
| def forward(ctx, run_function, length, *args): | |
| ctx.run_function = run_function | |
| ctx.input_tensors = list(args[:length]) | |
| ctx.input_params = list(args[length:]) | |
| ctx.gpu_autocast_kwargs = { | |
| "enabled": torch.is_autocast_enabled(), | |
| "dtype": torch.get_autocast_gpu_dtype(), | |
| "cache_enabled": torch.is_autocast_cache_enabled(), | |
| } | |
| with torch.no_grad(): | |
| output_tensors = ctx.run_function(*ctx.input_tensors) | |
| return output_tensors | |
| def backward(ctx, *output_grads): | |
| ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
| with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): | |
| # Fixes a bug where the first op in run_function modifies the | |
| # Tensor storage in place, which is not allowed for detach()'d | |
| # Tensors. | |
| shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
| output_tensors = ctx.run_function(*shallow_copies) | |
| input_grads = torch.autograd.grad( | |
| output_tensors, | |
| ctx.input_tensors + ctx.input_params, | |
| output_grads, | |
| allow_unused=True, | |
| ) | |
| del ctx.input_tensors | |
| del ctx.input_params | |
| del output_tensors | |
| return (None, None) + input_grads | |
| def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| if not repeat_only: | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) | |
| * torch.arange(start=0, end=half, dtype=torch.float32) | |
| / half | |
| ).to(device=timesteps.device) | |
| args = timesteps[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat( | |
| [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
| ) | |
| else: | |
| embedding = repeat(timesteps, "b -> b d", d=dim) | |
| return embedding | |
| def zero_module(module): | |
| """ | |
| Zero out the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def scale_module(module, scale): | |
| """ | |
| Scale the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().mul_(scale) | |
| return module | |
| def mean_flat(tensor): | |
| """ | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| def normalization(channels): | |
| """ | |
| Make a standard normalization layer. | |
| :param channels: number of input channels. | |
| :return: an nn.Module for normalization. | |
| """ | |
| return GroupNorm32(32, channels) | |
| # PyTorch 1.7 has SiLU, but we support PyTorch 1.5. | |
| class SiLU(nn.Module): | |
| def forward(self, x): | |
| return x * torch.sigmoid(x) | |
| class GroupNorm32(nn.GroupNorm): | |
| def forward(self, x): | |
| return super().forward(x.float()).type(x.dtype) | |
| def conv_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D convolution module. | |
| """ | |
| if dims == 1: | |
| return nn.Conv1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.Conv3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def linear(*args, **kwargs): | |
| """ | |
| Create a linear module. | |
| """ | |
| return nn.Linear(*args, **kwargs) | |
| def avg_pool_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D average pooling module. | |
| """ | |
| if dims == 1: | |
| return nn.AvgPool1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.AvgPool2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.AvgPool3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| class AlphaBlender(nn.Module): | |
| strategies = ["learned", "fixed", "learned_with_images"] | |
| def __init__( | |
| self, | |
| alpha: float, | |
| merge_strategy: str = "learned_with_images", | |
| rearrange_pattern: str = "b t -> (b t) 1 1", | |
| ): | |
| super().__init__() | |
| self.merge_strategy = merge_strategy | |
| self.rearrange_pattern = rearrange_pattern | |
| assert ( | |
| merge_strategy in self.strategies | |
| ), f"merge_strategy needs to be in {self.strategies}" | |
| if self.merge_strategy == "fixed": | |
| self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
| elif ( | |
| self.merge_strategy == "learned" | |
| or self.merge_strategy == "learned_with_images" | |
| ): | |
| self.register_parameter( | |
| "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) | |
| ) | |
| else: | |
| raise ValueError(f"unknown merge strategy {self.merge_strategy}") | |
| def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: | |
| if self.merge_strategy == "fixed": | |
| alpha = self.mix_factor | |
| elif self.merge_strategy == "learned": | |
| alpha = torch.sigmoid(self.mix_factor) | |
| elif self.merge_strategy == "learned_with_images": | |
| assert image_only_indicator is not None, "need image_only_indicator ..." | |
| alpha = torch.where( | |
| image_only_indicator.bool(), | |
| torch.ones(1, 1, device=image_only_indicator.device), | |
| rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"), | |
| ) | |
| alpha = rearrange(alpha, self.rearrange_pattern) | |
| else: | |
| raise NotImplementedError | |
| return alpha | |
| def forward( | |
| self, | |
| x_spatial: torch.Tensor, | |
| x_temporal: torch.Tensor, | |
| image_only_indicator: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| alpha = self.get_alpha(image_only_indicator) | |
| x = ( | |
| alpha.to(x_spatial.dtype) * x_spatial | |
| + (1.0 - alpha).to(x_spatial.dtype) * x_temporal | |
| ) | |
| return x | |