Spaces:
Sleeping
Sleeping
File size: 4,931 Bytes
2ba3952 9bfc205 2ba3952 d7e561a d923697 d7e561a d11baa8 d923697 9bfc205 738a092 d923697 d11baa8 d923697 d11baa8 50f3b7e d923697 d11baa8 d923697 d11baa8 d923697 50f3b7e d923697 50f3b7e d11baa8 d923697 d11baa8 d923697 50f3b7e d923697 50f3b7e d923697 50f3b7e d923697 d7e561a d11baa8 50f3b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide")
menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
uploaded_files = []
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def chat_with_model(prompt, document_section):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
conversation.append({'role': 'assistant', 'content': document_section})
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def transcribe_audio(openai_key, file_path, model):
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
response2 = chat_with_model(response.json().get('text'), '')
st.write('Responses:')
st.write(response2)
return response.json().get('text')
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
uploaded_files.append(filename) # Add the new file name to the list
return filename
return None
# ... (All your other function definitions)
def main():
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = uploaded_file.getvalue().decode('utf-8')
# Handle different file types here
# ...
document_sections.append(file_content)
new_filename = save_and_play_audio(audio_recorder)
if new_filename is not None:
st.write(f'File {new_filename} uploaded.')
if st.button("Transcribe"):
transcription = transcribe_audio(openai.api_key, new_filename, "whisper-1")
st.write(transcription)
chat_with_model(transcription, '') # push transcript through as prompt
if st.button('💬 Chat'):
user_responses = document_responses.get(user_prompt, [])
if len(user_responses) > 0:
st.write(user_responses[-1])
else:
if document_sections:
st.write('First document section:')
st.write(document_sections[0])
document_responses[user_prompt] = [chat_with_model(user_prompt, document_sections[0])]
st.write(document_responses[user_prompt][-1])
else:
document_responses[user_prompt] = [chat_with_model(user_prompt, '')]
st.write(document_responses[user_prompt][-1])
if uploaded_files:
st.write(f'Last uploaded file: {uploaded_files[-1]}')
for filename in uploaded_files:
if st.button(f"Transcribe and Chat for {filename}"):
transcription, response = transcribe_and_chat(openai.api_key, filename, "whisper-1")
if transcription is not None and response is not None:
filename = generate_filename(transcription, choice)
create_file(filename, transcription, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if __name__ == "__main__":
main()
|