File size: 6,881 Bytes
eeba00f
d08783e
 
 
 
4c7a0d0
 
 
 
 
 
 
 
 
 
 
 
fe65a03
4c7a0d0
 
fe65a03
 
4c7a0d0
 
fe65a03
4c7a0d0
fe65a03
 
 
03e5d97
 
fe65a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7a0d0
fe65a03
 
 
 
 
 
 
 
 
 
 
d08783e
0b06693
 
 
 
 
30ede3e
0b06693
 
 
30ede3e
 
 
 
 
 
 
0b06693
30ede3e
 
 
 
 
 
0b06693
30ede3e
 
0b06693
 
d08783e
de8b7b4
d08783e
 
 
 
 
f76869d
d08783e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569cf30
 
 
f10310e
569cf30
 
 
f10310e
569cf30
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import streamlit as st
import pandas as pd
import numpy as np
import altair as alt
import pydeck as pdk
import random


def build_dataframe(rows_count=100):
    """
    Creates columns with random data.
    """
    data = {
        'impressions': np.random.randint(low=111, high=10000, size=rows_count),
        'clicks': np.random.randint(low=0, high=1000, size=rows_count),
        'customer': random.choices(['ShirtsInc', 'ShoesCom'], k=rows_count)
    }

    df = pd.DataFrame(data)
    # add a date column and calculate the weekday of each row
    df['date'] = pd.date_range(start='1/1/2018', periods=rows_count)

    return df


data_df = build_dataframe()

query_params = st.experimental_get_query_params()
# There is only one value for each parameter, retrieve the one at # # index 0
username = query_params.get('username')[0]
password = query_params.get('password')[0]
view = query_params.get('view', None)[0]

# Super basic (and not recommended) way to store the credentials
# Just for illustrative purposes!
credentials = {
    'ShoesCom': 'shoespassword',
    'ShirtsInc': 'shirtspassword'
}

logged_in = False

# Check that the username exists in the "database" and that the provided password matches
if username in credentials and credentials[username] == password:
    logged_in = True

if not logged_in:
    # If credentials are invalid show a message and stop rendering the webapp
    st.warning('Invalid credentials')
    st.stop()

available_views = ['report']
if view not in available_views:
    # I don't know which view do you want. Beat it.
    st.warning('404 Error')
    st.stop()
# The username exists and the password matches!
# Also, the required view exists
# Show the webapp

st.title('Streamlit routing dashboard')

# IMPORTANT: show only the data of the logged in customer
st.dataframe(data_df[data_df['customer'] == username])










# callback to update query param on selectbox change
def update_params():
    st.experimental_set_query_params(option=st.session_state.qp)

options = ["cat", "dog", "mouse", "bat", "duck"]

query_params = st.experimental_get_query_params()

# set selectbox value based on query param, or provide a default
ix = 0
if query_params:
    try:
        ix = options.index(query_params['option'][0])
    except ValueError:
        pass

selected_option = st.radio(
    "Param", options, index=ix, key="qp", on_change=update_params
)

# set query param based on selection
st.experimental_set_query_params(option=selected_option)

# display for debugging purposes
st.write('---', st.experimental_get_query_params())


# SETTING PAGE CONFIG TO WIDE MODE AND ADDING A TITLE AND FAVICON
#st.set_page_config(layout="wide", page_title="NYC Ridesharing Demo", page_icon=":taxi:")

# LOAD DATA ONCE
@st.experimental_singleton
def load_data():
    data = pd.read_csv(
        "./uber-raw-data-sep14.csv.gz",
        nrows=100000,  # approx. 10% of data
        names=[
            "date/time",
            "lat",
            "lon",
        ],  # specify names directly since they don't change
        skiprows=1,  # don't read header since names specified directly
        usecols=[0, 1, 2],  # doesn't load last column, constant value "B02512"
        parse_dates=[
            "date/time"
        ],  # set as datetime instead of converting after the fact
    )

    return data


# FUNCTION FOR AIRPORT MAPS
def map(data, lat, lon, zoom):
    st.write(
        pdk.Deck(
            map_style="mapbox://styles/mapbox/light-v9",
            initial_view_state={
                "latitude": lat,
                "longitude": lon,
                "zoom": zoom,
                "pitch": 50,
            },
            layers=[
                pdk.Layer(
                    "HexagonLayer",
                    data=data,
                    get_position=["lon", "lat"],
                    radius=100,
                    elevation_scale=4,
                    elevation_range=[0, 1000],
                    pickable=True,
                    extruded=True,
                ),
            ],
        )
    )


# FILTER DATA FOR A SPECIFIC HOUR, CACHE
@st.experimental_memo
def filterdata(df, hour_selected):
    return df[df["date/time"].dt.hour == hour_selected]


# CALCULATE MIDPOINT FOR GIVEN SET OF DATA
@st.experimental_memo
def mpoint(lat, lon):
    return (np.average(lat), np.average(lon))


# FILTER DATA BY HOUR
@st.experimental_memo
def histdata(df, hr):
    filtered = data[
        (df["date/time"].dt.hour >= hr) & (df["date/time"].dt.hour < (hr + 1))
    ]

    hist = np.histogram(filtered["date/time"].dt.minute, bins=60, range=(0, 60))[0]

    return pd.DataFrame({"minute": range(60), "pickups": hist})


# STREAMLIT APP LAYOUT
data = load_data()

# LAYING OUT THE TOP SECTION OF THE APP
row1_1, row1_2 = st.columns((2, 3))

with row1_1:
    st.title("NYC Uber Ridesharing Data")
    hour_selected = st.slider("Select hour of pickup", 0, 23)

with row1_2:
    st.write(
        """
    ##
    Examining how Uber pickups vary over time in New York City's and at its major regional airports.
    By sliding the slider on the left you can view different slices of time and explore different transportation trends.
    """
    )

# LAYING OUT THE MIDDLE SECTION OF THE APP WITH THE MAPS
row2_1, row2_2, row2_3, row2_4 = st.columns((2, 1, 1, 1))

# SETTING THE ZOOM LOCATIONS FOR THE AIRPORTS
la_guardia = [40.7900, -73.8700]
jfk = [40.6650, -73.7821]
newark = [40.7090, -74.1805]
zoom_level = 12
midpoint = mpoint(data["lat"], data["lon"])

with row2_1:
    st.write(
        f"""**All New York City from {hour_selected}:00 and {(hour_selected + 1) % 24}:00**"""
    )
    map(filterdata(data, hour_selected), midpoint[0], midpoint[1], 11)

with row2_2:
    st.write("**La Guardia Airport**")
    map(filterdata(data, hour_selected), la_guardia[0], la_guardia[1], zoom_level)

with row2_3:
    st.write("**JFK Airport**")
    map(filterdata(data, hour_selected), jfk[0], jfk[1], zoom_level)

with row2_4:
    st.write("**Newark Airport**")
    map(filterdata(data, hour_selected), newark[0], newark[1], zoom_level)

# CALCULATING DATA FOR THE HISTOGRAM
chart_data = histdata(data, hour_selected)

# LAYING OUT THE HISTOGRAM SECTION
st.write(
    f"""**Breakdown of rides per minute between {hour_selected}:00 and {(hour_selected + 1) % 24}:00**"""
)

st.altair_chart(
    alt.Chart(chart_data)
    .mark_area(
        interpolate="step-after",
    )
    .encode(
        x=alt.X("minute:Q", scale=alt.Scale(nice=False)),
        y=alt.Y("pickups:Q"),
        tooltip=["minute", "pickups"],
    )
    .configure_mark(opacity=0.2, color="red"),
    use_container_width=True,
)


@st.experimental_memo
def foo(x):
    return x**2

if st.button("Clear Foo"):
    # Clear foo's memoized values:
    foo.clear()

if st.button("Clear All"):
	  # Clear values from *all* memoized functions:
		st.experimental_memo.clear()