Spaces:
Runtime error
Runtime error
File size: 8,373 Bytes
eeba00f d08783e 4c7a0d0 8292acd 4c7a0d0 fe65a03 8292acd fe65a03 8292acd fe65a03 d08783e 0b06693 30ede3e 0b06693 30ede3e 0b06693 30ede3e 0b06693 30ede3e 0b06693 d08783e de8b7b4 d08783e f76869d d08783e 569cf30 f10310e 569cf30 f10310e 569cf30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import streamlit as st
import pandas as pd
import numpy as np
import altair as alt
import pydeck as pdk
import random
from pytz import country_names
from st_aggrid import AgGrid, GridUpdateMode, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder
import snowflake.connector
from snowflake.connector.pandas_tools import write_pandas
from snowflake.connector import connect
@st.experimental_memo
def load_data():
df = pd.read_csv("CSV_samples/country-list.csv")
return df
@st.experimental_memo
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode("utf-8")
def execute_query(conn, df_sel_row, table_name):
if not df_sel_row.empty:
conn.cursor().execute(
"CREATE OR REPLACE TABLE "
f"{table_name}(COUNTRY string, CAPITAL string, TYPE string)"
)
write_pandas(
conn=conn,
df=df_sel_row,
table_name=table_name,
database="STREAMLIT_DB",
schema="PUBLIC",
quote_identifiers=False,
)
# Initialize connection.
# Uses st.experimental_singleton to only run once.
@st.experimental_singleton
def init_connection():
return snowflake.connector.connect(**st.secrets["snowflake"])
# The code below is for the title and logo.
st.set_page_config(page_title="Dataframe with editable cells", page_icon="💾")
st.image(
"https://emojipedia-us.s3.dualstack.us-west-1.amazonaws.com/thumbs/240/apple/325/floppy-disk_1f4be.png",
width=100,
)
conn = init_connection()
df = load_data()
st.title("Dataframe with editable cells")
st.write("")
st.markdown(
"""This is a demo of a dataframe with editable cells, powered by
[streamlit-aggrid](https://pypi.org/project/streamlit-aggrid/).
You can edit the cells by clicking on them, and then export
your selection to a `.csv` file (or send it to your Snowflake DB!)"""
)
st.write("")
st.write("")
st.subheader("① Select and edit cells")
st.info("💡 Hold the `Shift` (⇧) key to select multiple rows at once.")
st.caption("")
gd = GridOptionsBuilder.from_dataframe(df)
gd.configure_pagination(enabled=True)
gd.configure_default_column(editable=True, groupable=True)
gd.configure_selection(selection_mode="multiple", use_checkbox=True)
gridoptions = gd.build()
grid_table = AgGrid(
df,
gridOptions=gridoptions,
update_mode=GridUpdateMode.SELECTION_CHANGED,
theme="material",
)
sel_row = grid_table["selected_rows"]
st.subheader(" ② Check your selection")
st.write("")
df_sel_row = pd.DataFrame(sel_row)
csv = convert_df(df_sel_row)
if not df_sel_row.empty:
st.write(df_sel_row)
st.download_button(
label="Download to CSV",
data=csv,
file_name="results.csv",
mime="text/csv",
)
st.write("")
st.write("")
st.subheader("③ Send to Snowflake DB ❄️")
st.write("")
table_name = st.text_input("Pick a table name", "YOUR_TABLE_NAME_HERE", help="No spaces allowed")
run_query = st.button(
"Add to DB", on_click=execute_query, args=(conn, df_sel_row, table_name)
)
if run_query and not df_sel_row.empty:
st.success(
f"✔️ Selection added to the `{table_name}` table located in the `STREAMLIT_DB` database."
)
st.snow()
if run_query and df_sel_row.empty:
st.info("Nothing to add to DB, please select some rows")
# callback to update query param on selectbox change
def update_params():
st.experimental_set_query_params(option=st.session_state.qp)
options = ["cat", "dog", "mouse", "bat", "duck"]
query_params = st.experimental_get_query_params()
# set selectbox value based on query param, or provide a default
ix = 0
if query_params:
try:
ix = options.index(query_params['option'][0])
except ValueError:
pass
selected_option = st.radio(
"Param", options, index=ix, key="qp", on_change=update_params
)
# set query param based on selection
st.experimental_set_query_params(option=selected_option)
# display for debugging purposes
st.write('---', st.experimental_get_query_params())
# SETTING PAGE CONFIG TO WIDE MODE AND ADDING A TITLE AND FAVICON
#st.set_page_config(layout="wide", page_title="NYC Ridesharing Demo", page_icon=":taxi:")
# LOAD DATA ONCE
@st.experimental_singleton
def load_data():
data = pd.read_csv(
"./uber-raw-data-sep14.csv.gz",
nrows=100000, # approx. 10% of data
names=[
"date/time",
"lat",
"lon",
], # specify names directly since they don't change
skiprows=1, # don't read header since names specified directly
usecols=[0, 1, 2], # doesn't load last column, constant value "B02512"
parse_dates=[
"date/time"
], # set as datetime instead of converting after the fact
)
return data
# FUNCTION FOR AIRPORT MAPS
def map(data, lat, lon, zoom):
st.write(
pdk.Deck(
map_style="mapbox://styles/mapbox/light-v9",
initial_view_state={
"latitude": lat,
"longitude": lon,
"zoom": zoom,
"pitch": 50,
},
layers=[
pdk.Layer(
"HexagonLayer",
data=data,
get_position=["lon", "lat"],
radius=100,
elevation_scale=4,
elevation_range=[0, 1000],
pickable=True,
extruded=True,
),
],
)
)
# FILTER DATA FOR A SPECIFIC HOUR, CACHE
@st.experimental_memo
def filterdata(df, hour_selected):
return df[df["date/time"].dt.hour == hour_selected]
# CALCULATE MIDPOINT FOR GIVEN SET OF DATA
@st.experimental_memo
def mpoint(lat, lon):
return (np.average(lat), np.average(lon))
# FILTER DATA BY HOUR
@st.experimental_memo
def histdata(df, hr):
filtered = data[
(df["date/time"].dt.hour >= hr) & (df["date/time"].dt.hour < (hr + 1))
]
hist = np.histogram(filtered["date/time"].dt.minute, bins=60, range=(0, 60))[0]
return pd.DataFrame({"minute": range(60), "pickups": hist})
# STREAMLIT APP LAYOUT
data = load_data()
# LAYING OUT THE TOP SECTION OF THE APP
row1_1, row1_2 = st.columns((2, 3))
with row1_1:
st.title("NYC Uber Ridesharing Data")
hour_selected = st.slider("Select hour of pickup", 0, 23)
with row1_2:
st.write(
"""
##
Examining how Uber pickups vary over time in New York City's and at its major regional airports.
By sliding the slider on the left you can view different slices of time and explore different transportation trends.
"""
)
# LAYING OUT THE MIDDLE SECTION OF THE APP WITH THE MAPS
row2_1, row2_2, row2_3, row2_4 = st.columns((2, 1, 1, 1))
# SETTING THE ZOOM LOCATIONS FOR THE AIRPORTS
la_guardia = [40.7900, -73.8700]
jfk = [40.6650, -73.7821]
newark = [40.7090, -74.1805]
zoom_level = 12
midpoint = mpoint(data["lat"], data["lon"])
with row2_1:
st.write(
f"""**All New York City from {hour_selected}:00 and {(hour_selected + 1) % 24}:00**"""
)
map(filterdata(data, hour_selected), midpoint[0], midpoint[1], 11)
with row2_2:
st.write("**La Guardia Airport**")
map(filterdata(data, hour_selected), la_guardia[0], la_guardia[1], zoom_level)
with row2_3:
st.write("**JFK Airport**")
map(filterdata(data, hour_selected), jfk[0], jfk[1], zoom_level)
with row2_4:
st.write("**Newark Airport**")
map(filterdata(data, hour_selected), newark[0], newark[1], zoom_level)
# CALCULATING DATA FOR THE HISTOGRAM
chart_data = histdata(data, hour_selected)
# LAYING OUT THE HISTOGRAM SECTION
st.write(
f"""**Breakdown of rides per minute between {hour_selected}:00 and {(hour_selected + 1) % 24}:00**"""
)
st.altair_chart(
alt.Chart(chart_data)
.mark_area(
interpolate="step-after",
)
.encode(
x=alt.X("minute:Q", scale=alt.Scale(nice=False)),
y=alt.Y("pickups:Q"),
tooltip=["minute", "pickups"],
)
.configure_mark(opacity=0.2, color="red"),
use_container_width=True,
)
@st.experimental_memo
def foo(x):
return x**2
if st.button("Clear Foo"):
# Clear foo's memoized values:
foo.clear()
if st.button("Clear All"):
# Clear values from *all* memoized functions:
st.experimental_memo.clear() |