Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import random | |
# Magic commands | |
#st.set_page_config(page_title='Streamlit Super Power Cheat Sheet - Gamified') | |
#st.set_option('deprecation.showfileUploaderEncoding', False) | |
# Define player cards | |
player1 = [{'Word': 'Strategy', 'Definition': 'A plan of action designed to achieve a long-term or overall aim.'}, | |
{'Word': 'Economics', 'Definition': 'The branch of knowledge concerned with the production, consumption, and transfer of wealth.'}, | |
{'Word': 'Industry', 'Definition': 'Economic activity concerned with the processing of raw materials and manufacture of goods in factories.'}] | |
player2 = [{'Word': 'Manufacturing', 'Definition': 'The making of articles on a large scale using machinery.'}, | |
{'Word': 'Transportation', 'Definition': 'The action of transporting someone or something or the process of being transported.'}, | |
{'Word': 'Community', 'Definition': 'A group of people living in the same place or having a particular characteristic in common.'}] | |
# Create dataframes for each player card | |
df_player1 = pd.DataFrame(player1) | |
df_player2 = pd.DataFrame(player2) | |
# Merge the dataframes on word matches | |
df_matches = pd.merge(df_player1, df_player2, on='Word') | |
# Display the merged dataframe | |
st.dataframe(df_matches) | |
# Display the word match count | |
match_count = df_matches.shape[0] | |
st.write(f'Number of word matches: {match_count}') | |
# Display a random word match | |
if match_count > 0: | |
random_match = df_matches.iloc[random.randint(0, match_count-1)] | |
st.write(f'Random match: {random_match["Word"]}') | |
st.write(f'{random_match["Definition_x"]}') | |
st.write(f'{random_match["Definition_y"]}') | |
else: | |
st.write('No word matches') | |
# Emoji graphics | |
AI = 'π€' | |
DATA = 'π' | |
EMOJIS = ['π€£', 'π', 'π', 'π€ͺ', 'π', 'π€'] | |
# strategy data | |
import pandas as pd | |
# Define the strategy classifications and their definitions | |
strategy_data = [ | |
{'Classification': 'Economic', 'Definition': 'π° The branch of knowledge concerned with the production, consumption, and transfer of wealth.'}, | |
{'Classification': 'Industry', 'Definition': 'π Economic activity concerned with the processing of raw materials and manufacture of goods in factories.'}, | |
{'Classification': 'Manufacturing', 'Definition': 'π The making of articles on a large scale using machinery.'}, | |
{'Classification': 'Development', 'Definition': 'ποΈ The process of growth, progress, or realization of goals.'}, | |
{'Classification': 'Transport', 'Definition': 'π The movement of people, goods, or materials from one place to another.'}, | |
{'Classification': 'Income', 'Definition': 'πΈ The money received by a person, company, or country for work, services, or investment.'}, | |
{'Classification': 'Market', 'Definition': 'π A regular gathering of people for the purchase and sale of goods.'}, | |
{'Classification': 'Network', 'Definition': 'π A group of interconnected people, companies, or devices that share information or resources.'}, | |
] | |
st.markdown(""" | |
Classification Definition | |
0 Economic π° The branch of knowledge concerned with the p... | |
1 Industry π Economic activity concerned with the process... | |
2 Manufacturing π The making of articles on a large scale usin... | |
3 Development ποΈ The process of growth, progress, or realiz... | |
4 Transport π The movement of people, goods, or materials ... | |
5 Income πΈ The money received by a person, company, or ... | |
6 Market π A regular gathering of people for the purcha... | |
7 Network π A group of interconnected people, companies,... | |
""") | |
# Create a dataframe from the strategy data | |
df_strategy = pd.DataFrame(strategy_data) | |
# Display the dataframe | |
print(df_strategy) | |
# Example AI data | |
ai_data = {'accuracy': 0.89, 'precision': 0.72, 'recall': 0.64, 'f1': 0.68} | |
# One-liner functions | |
st.write(f"{AI} I'm sorry Dave, I'm afraid I can't do that.") | |
st.dataframe(pd.DataFrame(ai_data, index=['Model'])) | |
st.table(pd.DataFrame(ai_data, index=['Model'])) | |
st.json({'foo':'bar', 'fu':'ba', 'ai_data': ai_data}) | |
st.metric(label="Model Accuracy", value=ai_data['accuracy'], delta=0.02) | |
st.button('Hit me ' + random.choice(EMOJIS)) | |
st.checkbox('Tickle me ' + random.choice(EMOJIS)) | |
st.radio('Choose your favorite ' + DATA, ['Bar chart', 'Pie chart', 'Line chart']) | |
st.selectbox('Select your ' + DATA, ['Sales', 'Expenses', 'Profits']) | |
st.multiselect('Pick your favorite ' + DATA + 's', ['Revenue', 'Profit', 'Loss']) | |
st.slider('Slide to ' + DATA, min_value=0, max_value=10) | |
st.select_slider('Slide to select your favorite ' + DATA, options=[1,2,3,4]) | |
st.text_input('Enter some ' + DATA) | |
st.number_input('Enter a random ' + DATA + ' value') | |
st.text_area('Type something ' + random.choice(EMOJIS) + ' here') | |
st.date_input('Choose a ' + random.choice(['start', 'end']) + ' ' + DATA + ' date') | |
st.time_input('What time is it? ' + random.choice(EMOJIS)) | |
st.file_uploader('Upload your favorite ' + DATA + ' ' + random.choice(EMOJIS)) | |
st.color_picker('Pick a ' + DATA + ' ' + random.choice(EMOJIS)) |