File size: 2,627 Bytes
215cca8
 
 
 
d8b9844
eb829ce
 
 
215cca8
 
 
 
 
 
 
c89df82
215cca8
b15b4a9
215cca8
 
 
 
eb829ce
0fc8f14
 
 
 
 
14c2ff3
 
 
 
0fc8f14
 
eb829ce
 
 
 
215cca8
eb829ce
 
 
215cca8
 
 
eb829ce
c89df82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb829ce
 
 
14c2ff3
 
eb829ce
 
c89df82
eb829ce
 
 
c89df82
eb829ce
 
 
c89df82
eb829ce
c89df82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import streamlit as st
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import datetime
from transformers import pipeline
import gradio as gr

@st.experimental_singleton
def get_db_firestore():
    cred = credentials.Certificate('test.json')
    firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',})
    db = firestore.client()
    return db


db = get_db_firestore()
upsertoftheminute(u'TimeSeries', u'DocumentofMinute', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', u'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', 2022)
selectCollectionDocument(u"TimeSeries", u"DocumentofMinute")



asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")

def transcribe(audio):
    text = asr(audio)["text"]
    return text

#gr.Interface(
#    fn=transcribe, 
#    inputs=gr.inputs.Audio(source="microphone", type="filepath"), 
#    outputs="text").launch()


classifier = pipeline("text-classification")

def speech_to_text(speech):
    text = asr(speech)["text"]
    upsertoftheminute(u'TimeSeries', u'DocumentofMinuteText', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', text, 2022)
    return text

def text_to_sentiment(text):
    sentiment = classifier(text)[0]["label"]
    upsertoftheminute(u'TimeSeries', u'DocumentofMinuteSentiment', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', sentiment, 2022)
    return sentiment 

def upsert(text):
    date_time =str(datetime.datetime.today()).split()[0]
    doc_ref = db.collection('Text2SpeechSentimentSave').document('Text2SpeechSentimentSave')
    doc_ref.set({u'firefield': 'Text2SpeechSentimentSave', u'first': 'Text2SpeechSentimentSave', u'last': 'Text2SpeechSentimentSave', u'born': date_time,})
    saved = select('Text2SpeechSentimentSave','Text2SpeechSentimentSave')
    return saved
      
def select(collection, document):
    doc_ref = db.collection(collection).document(document)
    doc = doc_ref.get()
    docid = ("The id is: ", doc.id)
    contents = ("The contents are: ", doc.to_dict())
    return contents
    
    
demo = gr.Blocks()

with demo:
    #audio_file = gr.Audio(type="filepath")
    audio_file = gr.inputs.Audio(source="microphone", type="filepath")
    text = gr.Textbox()
    label = gr.Label()
    saved = gr.Label()

    b1 = gr.Button("Recognize Speech")
    b2 = gr.Button("Classify Sentiment")
    b3 = gr.Button("Save Speech to Text")

    b1.click(speech_to_text, inputs=audio_file, outputs=text)
    b2.click(text_to_sentiment, inputs=text, outputs=label)
    b3.click(text_to_sentiment, inputs=text, outputs=saved)

demo.launch(share=True)