Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
+
|
5 |
+
# Load the GPT2 tokenizer and model
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
7 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
8 |
+
|
9 |
+
# Set the maximum length of the generated prompt
|
10 |
+
max_length = 50
|
11 |
+
|
12 |
+
# Define the prompts
|
13 |
+
prompts = [
|
14 |
+
"Difficulty sleeping: ",
|
15 |
+
"Time management: ",
|
16 |
+
"Stress management: ",
|
17 |
+
"Healthy eating: ",
|
18 |
+
"Exercise: ",
|
19 |
+
"Financial planning: ",
|
20 |
+
"Communication skills: ",
|
21 |
+
"Career development: ",
|
22 |
+
"Relationship issues: ",
|
23 |
+
"Self-improvement: "
|
24 |
+
]
|
25 |
+
|
26 |
+
# Define the solutions
|
27 |
+
solutions = [
|
28 |
+
"Try keeping a consistent sleep schedule and avoid caffeine before bedtime.",
|
29 |
+
"Use a planner or time-tracking app to prioritize tasks and stay on schedule.",
|
30 |
+
"Practice mindfulness techniques such as deep breathing or meditation.",
|
31 |
+
"Incorporate more fruits and vegetables into your diet and limit processed foods.",
|
32 |
+
"Aim for at least 30 minutes of moderate physical activity daily.",
|
33 |
+
"Create a budget and track expenses to avoid overspending.",
|
34 |
+
"Practice active listening and express yourself clearly and assertively.",
|
35 |
+
"Set clear goals and seek feedback and professional development opportunities.",
|
36 |
+
"Practice empathy and active communication with your partner or seek professional counseling.",
|
37 |
+
"Read self-help books, learn new skills or hobbies, and practice self-reflection."
|
38 |
+
]
|
39 |
+
|
40 |
+
# Define the function to generate the prompts
|
41 |
+
def generate_prompt(prompt):
|
42 |
+
# Generate the prompt text
|
43 |
+
prompt_text = prompt + tokenizer.eos_token
|
44 |
+
# Encode the prompt text
|
45 |
+
encoded_prompt = tokenizer.encode(prompt_text, return_tensors='pt')
|
46 |
+
# Generate the prompt output
|
47 |
+
output = model.generate(encoded_prompt, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True)
|
48 |
+
# Decode the prompt output
|
49 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
+
# Return the generated prompt
|
51 |
+
return output_text
|
52 |
+
|
53 |
+
# Define the streamlit app
|
54 |
+
def app():
|
55 |
+
# Set the app title
|
56 |
+
st.title('Prompt Generator')
|
57 |
+
# Get the user input
|
58 |
+
option = st.selectbox('Select a prompt:', prompts)
|
59 |
+
# Generate the prompt
|
60 |
+
prompt = generate_prompt(option)
|
61 |
+
# Display the prompt
|
62 |
+
st.write('Prompt:', option + prompt)
|
63 |
+
# Display the solution
|
64 |
+
st.write('Solution:', solutions[prompts.index(option)])
|
65 |
+
|
66 |
+
# Run the streamlit app
|
67 |
+
if __name__ == '__main__':
|
68 |
+
app()
|