Spaces:
Runtime error
Runtime error
import streamlit as st | |
from sklearn.decomposition import NMF | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.pipeline import Pipeline | |
bow_vectorizer = CountVectorizer() | |
nmf = NMF(n_components=10) | |
topic_pipeline = Pipeline( | |
[ | |
("bow", bow_vectorizer), | |
("nmf", nmf), | |
] | |
) | |
st.subheader("Topic Modeling with Topic-Wizard") | |
uploaded_file = st.file_uploader("choose a text file", type=["txt"]) | |
if uploaded_file is not None: | |
st.session_state["text"] = uploaded_file.getvalue().decode('utf-8') | |
st.write("OR") | |
input_text = st.text_area( | |
label="Enter text separated by newlines", | |
value="", | |
key="text", | |
height=150 | |
) | |
button=st.button('Get Segments') | |
if (button==True) and input_text != "": | |
texts = input_text.split('\n') | |
sents = [] | |
for text in texts: | |
doc = nlp(text) | |
for sent in doc.sents: | |
sents.append(sent) | |
topic_pipeline.fit(st.session_state["text"]) | |
import topicwizard | |
topicwizard.visualize(pipeline=topic_pipeline, corpus=texts) | |