Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,50 +5,49 @@ import plotly.express as px
|
|
5 |
|
6 |
st.set_page_config(page_title="Topic Modeling with Bertopic")
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
st.write(f"\t{doc}")
|
|
|
5 |
|
6 |
st.set_page_config(page_title="Topic Modeling with Bertopic")
|
7 |
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
st.markdown("""
|
11 |
+
https://github.com/pinecone-io/examples/tree/master/learn/algos-and-libraries/bertopic
|
12 |
+
""")
|
13 |
+
|
14 |
+
data = load_dataset('jamescalam/python-reddit')
|
15 |
+
data = data.filter(
|
16 |
+
lambda x: True if len(x['selftext']) > 30 else 0
|
17 |
+
)
|
18 |
+
from bertopic import BERTopic
|
19 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
20 |
+
|
21 |
+
# we add this to remove stopwords
|
22 |
+
vectorizer_model = CountVectorizer(ngram_range=(1, 2), stop_words="english")
|
23 |
+
|
24 |
+
model = BERTopic(
|
25 |
+
vectorizer_model=vectorizer_model,
|
26 |
+
language='english', calculate_probabilities=True,
|
27 |
+
verbose=True
|
28 |
+
)
|
29 |
+
topics, probs = model.fit_transform(text)
|
30 |
+
freq = model.get_topic_info()
|
31 |
+
freq.head(10)
|
32 |
+
|
33 |
+
|
34 |
+
from sentence_transformers import SentenceTransformer
|
35 |
+
|
36 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
37 |
+
model
|
38 |
+
|
39 |
+
import numpy as np
|
40 |
+
from tqdm.auto import tqdm
|
41 |
+
|
42 |
+
batch_size = 16
|
43 |
+
|
44 |
+
embeds = np.zeros((n, model.get_sentence_embedding_dimension()))
|
45 |
+
|
46 |
+
for i in tqdm(range(0, n, batch_size)):
|
47 |
+
i_end = min(i+batch_size, n)
|
48 |
+
batch = data['selftext'][i:i_end]
|
49 |
+
batch_embed = model.encode(batch)
|
50 |
+
embeds[i:i_end,:] = batch_embed
|
51 |
+
|
52 |
+
|
53 |
+
|
|