Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,21 @@ import streamlit as st
|
|
2 |
from sklearn.decomposition import NMF
|
3 |
from sklearn.feature_extraction.text import CountVectorizer
|
4 |
from sklearn.pipeline import Pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
topic_pipeline = Pipeline(
|
9 |
-
[
|
10 |
-
("bow", bow_vectorizer),
|
11 |
-
("nmf", nmf),
|
12 |
-
]
|
13 |
-
)
|
14 |
|
15 |
st.subheader("Topic Modeling with Topic-Wizard")
|
16 |
-
uploaded_file = st.file_uploader("
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
st.write("OR")
|
21 |
|
@@ -23,21 +24,46 @@ input_text = st.text_area(
|
|
23 |
label="Enter text separated by newlines",
|
24 |
value="",
|
25 |
key="text",
|
26 |
-
height=150
|
27 |
)
|
28 |
|
29 |
-
button=st.button(
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
2 |
from sklearn.decomposition import NMF
|
3 |
from sklearn.feature_extraction.text import CountVectorizer
|
4 |
from sklearn.pipeline import Pipeline
|
5 |
+
from bertopic import BERTopic
|
6 |
+
import streamlit.components.v1 as components
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from umap import UMAP
|
9 |
+
from hdbscan import HDBSCAN
|
10 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
11 |
|
12 |
+
# Initialize BERTopic model
|
13 |
+
model = BERTopic()
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
st.subheader("Topic Modeling with Topic-Wizard")
|
16 |
+
uploaded_file = st.file_uploader("Choose a text file", type=["txt"])
|
17 |
+
|
18 |
+
if uploaded_file is not None:
|
19 |
+
st.session_state["text"] = uploaded_file.getvalue().decode("utf-8")
|
20 |
|
21 |
st.write("OR")
|
22 |
|
|
|
24 |
label="Enter text separated by newlines",
|
25 |
value="",
|
26 |
key="text",
|
27 |
+
height=150,
|
28 |
)
|
29 |
|
30 |
+
button = st.button("Get Segments")
|
31 |
+
|
32 |
+
if button and (uploaded_file is not None or input_text != ""):
|
33 |
+
if uploaded_file is not None:
|
34 |
+
texts = st.session_state["text"].split("\n")
|
35 |
+
else:
|
36 |
+
texts = input_text.split("\n")
|
37 |
+
|
38 |
+
# Fit BERTopic model
|
39 |
+
topics, probabilities = model.fit_transform(texts)
|
40 |
+
|
41 |
+
# Create embeddings
|
42 |
+
embeddings_model = SentenceTransformer("distilbert-base-nli-mean-tokens")
|
43 |
+
embeddings = embeddings_model.encode(texts)
|
44 |
+
|
45 |
+
# Reduce dimensionality of embeddings using UMAP
|
46 |
+
umap_model = UMAP(n_neighbors=15, n_components=2, metric="cosine")
|
47 |
+
umap_embeddings = umap_model.fit_transform(embeddings)
|
48 |
+
|
49 |
+
# Cluster topics using HDBSCAN
|
50 |
+
cluster = HDBSCAN(
|
51 |
+
min_cluster_size=15, metric="euclidean", cluster_selection_method="eom"
|
52 |
+
).fit(umap_embeddings)
|
53 |
|
54 |
+
# Visualize BERTopic results with Streamlit
|
55 |
+
st.title("BERTopic Visualization")
|
56 |
|
57 |
+
# Display top N most representative topics and their documents
|
58 |
+
num_topics = st.sidebar.slider("Select number of topics to display", 1, 20, 5, 1)
|
59 |
+
topic_words, topic_docs = model.get_topics(num_topics=num_topics, with_documents=True)
|
60 |
+
for i, topic in enumerate(topic_words):
|
61 |
+
st.write(f"## Topic {i}")
|
62 |
+
st.write("Keywords:", ", ".join(topic))
|
63 |
+
st.write("Documents:")
|
64 |
+
for doc in topic_docs[i][:5]:
|
65 |
+
st.write("-", texts[doc])
|
66 |
|
67 |
+
# Display topic clusters
|
68 |
+
st.write("## Topic Clusters")
|
69 |
+
components.html(cluster.labels_.tolist(), height=500, width=800)
|