from sklearn.decomposition import NMF from sklearn.feature_extraction.text import CountVectorizer from sklearn.pipeline import Pipeline bow_vectorizer = CountVectorizer() nmf = NMF(n_components=10) topic_pipeline = Pipeline( [ ("bow", bow_vectorizer), ("nmf", nmf), ] ) topic_pipeline.fit(texts) import topicwizard topicwizard.visualize(pipeline=topic_pipeline, corpus=texts)