import streamlit as st import pandas as pd import bertopic import plotly.express as px import matplotlib as mp st.set_page_config(page_title="Topic Modeling with Bertopic") from datasets import load_dataset st.markdown(""" https://github.com/pinecone-io/examples/tree/master/learn/algos-and-libraries/bertopic """) # data = load_dataset('jamescalam/python-reddit') data = load_dataset("awacke1/LOINC-Panels-and-Forms") from datasets import load_dataset geo = load_dataset('jamescalam/world-cities-geo', split='train') st.write(geo) import plotly.express as px palette = ['#1c17ff', '#faff00', '#8cf1ff', '#000000', '#030080', '#738fab'] fig = px.scatter_3d( x=geo['x'], y=geo['y'], z=geo['z'], color=geo['continent'], custom_data=[geo['country'], geo['city']], color_discrete_sequence=palette ) fig.update_traces( hovertemplate="\n".join([ "city: %{customdata[1]}", "country: %{customdata[0]}" ]) ) fig.write_html("umap-earth-3d.html", include_plotlyjs="cdn", full_html=False) import numpy as np geo_arr = np.asarray([geo['x'], geo['y'], geo['z']]).T geo_arr = geo_arr / geo_arr.max() st.markdown(geo_arr[:5]) import umap colors = geo['continent'] c_map = { 'Africa': '#8cf1ff', 'Asia': '#1c17ff', 'Europe': '#faff00', 'North America': '#738fab', 'Oceania': '#030080', 'South America': '#000000' } for i in range(len(colors)): colors[i] = c_map[colors[i]] colors[:5] import matplotlib.pyplot as plt import seaborn as sns from tqdm.auto import tqdm fig, ax = plt.subplots(3, 3, figsize=(14, 14)) nns = [2, 3, 4, 5, 10, 15, 30, 50, 100] i, j = 0, 0 for n_neighbors in tqdm(nns): fit = umap.UMAP(n_neighbors=n_neighbors) u = fit.fit_transform(geo_arr) sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i]) ax[j, i].set_title(f'n={n_neighbors}') if i < 2: i += 1 else: i = 0; j += 1 target = geo['continent'] t_map = { 'Africa': 0, 'Asia': 1, 'Europe': 2, 'North America': 3, 'Oceania': 4, 'South America': 5 } for i in range(len(target)): target[i] = t_map[target[i]] fig, ax = plt.subplots(3, 3, figsize=(14, 14)) nns = [2, 3, 4, 5, 10, 15, 30, 50, 100] i, j = 0, 0 for n_neighbors in tqdm(nns): fit = umap.UMAP(n_neighbors=n_neighbors) u = fit.fit_transform(geo_arr, y=target) sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i]) ax[j, i].set_title(f'n={n_neighbors}') if i < 2: i += 1 else: i = 0; j += 1 import umap fit = umap.UMAP(n_neighbors=50, min_dist=0.5) u = fit.fit_transform(geo_arr) fig = px.scatter( x=u[:,0], y=u[:,1], color=geo['continent'], custom_data=[geo['country'], geo['city']], color_discrete_sequence=palette ) fig.update_traces( hovertemplate="\n".join([ "city: %{customdata[1]}", "country: %{customdata[0]}" ]) ) fig.write_html("umap-earth-2d.html", include_plotlyjs="cdn", full_html=False) import pandas as pd umapped = pd.DataFrame({ 'x': u[:,0], 'y': u[:,1], 'continent': geo['continent'], 'country': geo['country'], 'city': geo['city'] }) umapped.to_csv('umapped.csv', sep='|', index=False) from sklearn.decomposition import PCA pca = PCA(n_components=2) # this means we will create 2-d space p = pca.fit_transform(geo_arr) fig = px.scatter( x=p[:,0], y=p[:,1], color=geo['continent'], custom_data=[geo['country'], geo['city']], color_discrete_sequence=palette ) fig.update_traces( hovertemplate="\n".join([ "city: %{customdata[1]}", "country: %{customdata[0]}" ]) ) fig.write_html("pca-earth-2d.html", include_plotlyjs="cdn", full_html=False)