awacke1 commited on
Commit
367bf39
·
verified ·
1 Parent(s): c7ea952

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -19
app.py CHANGED
@@ -1,7 +1,3 @@
1
- #TorchNeuralNetworkNLTKRequests
2
- #Create a torch demonstration and use data created with this program below for input and output. Design a torch demo that uses simple convolutions to explain correlation between one word and another and add to IO patterns of this program and use requests and nlp including nltk to remix a demonstration app that uses the text files as input.
3
- #Have this allow users to build their library of prompts and add it to their user file defined by email address named text file.
4
- #Add links to sites with reference documentation. Use this as teaching lesson in python streamlit UI and code yet remove all comments and just have variable names be super descriptive
5
  import streamlit as st
6
  import torch
7
  import torch.nn as nn
@@ -24,6 +20,19 @@ def text_convolution(input_text, kernel_size=3):
24
  output = conv_layer(tensor_input)
25
  return output, words
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  # Streamlit UI
28
  def main():
29
  st.title("Text Convolution Demonstration")
@@ -39,7 +48,9 @@ def main():
39
 
40
  # Visualization
41
  word_counts = pd.Series(words).value_counts()
42
- st.bar_chart(word_counts.head(20))
 
 
43
 
44
  # Saving user prompts
45
  user_file_name = f"{user_email}_prompts.txt"
@@ -56,17 +67,3 @@ def main():
56
  if __name__ == "__main__":
57
  main()
58
 
59
-
60
- #Create requirements.txt import streamlit as st
61
- #import torch
62
- #import torch.nn as nn
63
- #import nltk
64
- #from nltk.corpus import stopwords
65
- #import requests
66
- #import os
67
-
68
- #streamlit
69
- #torch
70
- #nltk
71
- #requests
72
-
 
 
 
 
 
1
  import streamlit as st
2
  import torch
3
  import torch.nn as nn
 
20
  output = conv_layer(tensor_input)
21
  return output, words
22
 
23
+
24
+ # Function to color the bars based on whether they appear together or not
25
+ def color_bars(words):
26
+ color_map = {}
27
+ color_index = 0
28
+ for word in words:
29
+ if word not in color_map:
30
+ color_map[word] = color_index
31
+ color_index += 1
32
+ colors = [f"#{random.randint(0, 0xFFFFFF):06x}" for _ in range(len(color_map))]
33
+ return [colors[color_map[word]] for word in words]
34
+
35
+
36
  # Streamlit UI
37
  def main():
38
  st.title("Text Convolution Demonstration")
 
48
 
49
  # Visualization
50
  word_counts = pd.Series(words).value_counts()
51
+ word_counts = word_counts.sort_values(ascending=False)
52
+ colors = color_bars(word_counts.index)
53
+ st.bar_chart(word_counts.head(20), color=colors)
54
 
55
  # Saving user prompts
56
  user_file_name = f"{user_email}_prompts.txt"
 
67
  if __name__ == "__main__":
68
  main()
69