Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,8 @@ import glob
|
|
| 7 |
import io
|
| 8 |
import json
|
| 9 |
import logging
|
|
|
|
|
|
|
| 10 |
import os
|
| 11 |
import pandas as pd
|
| 12 |
import pytz
|
|
@@ -15,24 +17,32 @@ import re
|
|
| 15 |
import requests
|
| 16 |
import shutil
|
| 17 |
import streamlit as st
|
|
|
|
| 18 |
import sys
|
|
|
|
| 19 |
import time
|
|
|
|
| 20 |
import torch
|
| 21 |
import zipfile
|
| 22 |
|
| 23 |
from audio_recorder_streamlit import audio_recorder
|
|
|
|
|
|
|
| 24 |
from contextlib import redirect_stdout
|
| 25 |
from dataclasses import dataclass
|
| 26 |
from datetime import datetime
|
| 27 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
| 28 |
from io import BytesIO
|
| 29 |
-
from moviepy import VideoFileClip
|
| 30 |
from openai import OpenAI
|
| 31 |
from PIL import Image
|
| 32 |
from PyPDF2 import PdfReader
|
| 33 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
| 34 |
from typing import Optional
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
# Initialize OpenAI client
|
| 38 |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
|
@@ -60,13 +70,18 @@ st.set_page_config(
|
|
| 60 |
)
|
| 61 |
|
| 62 |
# Session state initialization
|
| 63 |
-
for key in ['history', '
|
| 64 |
-
st.session_state.setdefault(key, [] if key in ['history', 'messages'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else
|
|
|
|
|
|
|
| 65 |
st.session_state.setdefault('selected_model_type', "Causal LM")
|
| 66 |
st.session_state.setdefault('selected_model', "None")
|
| 67 |
st.session_state.setdefault('gallery_size', 2)
|
| 68 |
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty())
|
|
|
|
|
|
|
| 69 |
|
|
|
|
| 70 |
@dataclass
|
| 71 |
class ModelConfig:
|
| 72 |
name: str
|
|
@@ -93,6 +108,11 @@ class ModelBuilder:
|
|
| 93 |
self.config = None
|
| 94 |
self.model = None
|
| 95 |
self.tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 97 |
with st.spinner(f"Loading {model_path}... โณ"):
|
| 98 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
@@ -102,7 +122,7 @@ class ModelBuilder:
|
|
| 102 |
if config:
|
| 103 |
self.config = config
|
| 104 |
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 105 |
-
st.success(f"Model loaded! ๐")
|
| 106 |
return self
|
| 107 |
def save_model(self, path: str):
|
| 108 |
with st.spinner("Saving model... ๐พ"):
|
|
@@ -130,10 +150,11 @@ class DiffusionBuilder:
|
|
| 130 |
def generate(self, prompt: str):
|
| 131 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
| 132 |
|
|
|
|
| 133 |
def generate_filename(prompt, ext="png"):
|
| 134 |
central = pytz.timezone('US/Central')
|
| 135 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
| 136 |
-
safe_prompt = re.sub(r'[<>:"
|
| 137 |
return f"{safe_date_time}_{safe_prompt}.{ext}"
|
| 138 |
|
| 139 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
|
@@ -162,6 +183,7 @@ def download_pdf(url, output_path):
|
|
| 162 |
logger.error(f"Failed to download {url}: {e}")
|
| 163 |
return False
|
| 164 |
|
|
|
|
| 165 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
| 166 |
start_time = time.time()
|
| 167 |
status = st.empty()
|
|
@@ -248,18 +270,24 @@ def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
|
| 248 |
except Exception as e:
|
| 249 |
return f"Error processing text with GPT: {str(e)}"
|
| 250 |
|
| 251 |
-
def process_audio(audio_input,
|
| 252 |
with open(audio_input, "rb") as file:
|
| 253 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
def process_video(video_path, prompt):
|
| 258 |
base64Frames, audio_path = process_video_frames(video_path)
|
| 259 |
with open(video_path, "rb") as file:
|
| 260 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
| 261 |
messages = [{"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{prompt}"}]}]
|
| 262 |
-
response = client.chat.completions.create(model="gpt-4o-
|
| 263 |
return response.choices[0].message.content
|
| 264 |
|
| 265 |
def process_video_frames(video_path, seconds_per_frame=2):
|
|
@@ -300,13 +328,147 @@ def execute_code(code):
|
|
| 300 |
finally:
|
| 301 |
buffer.close()
|
| 302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
# Sidebar
|
| 304 |
st.sidebar.subheader("Gallery Settings")
|
| 305 |
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
|
| 306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
# Tabs
|
| 308 |
-
tabs = st.tabs(["Camera ๐ท", "Download ๐ฅ", "OCR ๐", "Build ๐ฑ", "Image Gen ๐จ", "PDF ๐", "Image ๐ผ๏ธ", "Audio ๐ต", "Video ๐ฅ", "Code ๐งโ๐ป", "Gallery ๐"])
|
| 309 |
-
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery) = tabs
|
| 310 |
|
| 311 |
with tab_camera:
|
| 312 |
st.header("Camera Snap ๐ท")
|
|
@@ -324,8 +486,11 @@ with tab_camera:
|
|
| 324 |
|
| 325 |
with tab_download:
|
| 326 |
st.header("Download PDFs ๐ฅ")
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
| 329 |
urls = url_input.strip().split("\n")
|
| 330 |
progress_bar = st.progress(0)
|
| 331 |
for idx, url in enumerate(urls):
|
|
@@ -464,6 +629,17 @@ with tab_gallery:
|
|
| 464 |
elif file.endswith('.mp4'):
|
| 465 |
st.video(file)
|
| 466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
# Update gallery in sidebar
|
| 468 |
def update_gallery():
|
| 469 |
container = st.session_state['asset_gallery_container']
|
|
@@ -497,4 +673,18 @@ for record in log_records:
|
|
| 497 |
st.sidebar.subheader("History ๐")
|
| 498 |
for entry in st.session_state.get("history", []):
|
| 499 |
if entry:
|
| 500 |
-
st.sidebar.write(entry)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import io
|
| 8 |
import json
|
| 9 |
import logging
|
| 10 |
+
import math
|
| 11 |
+
import mistune
|
| 12 |
import os
|
| 13 |
import pandas as pd
|
| 14 |
import pytz
|
|
|
|
| 17 |
import requests
|
| 18 |
import shutil
|
| 19 |
import streamlit as st
|
| 20 |
+
import streamlit.components.v1 as components
|
| 21 |
import sys
|
| 22 |
+
import textract
|
| 23 |
import time
|
| 24 |
+
import tiktoken
|
| 25 |
import torch
|
| 26 |
import zipfile
|
| 27 |
|
| 28 |
from audio_recorder_streamlit import audio_recorder
|
| 29 |
+
from bs4 import BeautifulSoup
|
| 30 |
+
from collections import deque
|
| 31 |
from contextlib import redirect_stdout
|
| 32 |
from dataclasses import dataclass
|
| 33 |
from datetime import datetime
|
| 34 |
from diffusers import StableDiffusionPipeline
|
| 35 |
+
from gradio_client import Client, handle_file
|
| 36 |
+
from huggingface_hub import InferenceClient
|
| 37 |
from io import BytesIO
|
| 38 |
+
from moviepy import VideoFileClip
|
| 39 |
from openai import OpenAI
|
| 40 |
from PIL import Image
|
| 41 |
from PyPDF2 import PdfReader
|
| 42 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
| 43 |
from typing import Optional
|
| 44 |
+
from urllib.parse import quote
|
| 45 |
+
from xml.etree import ElementTree as ET
|
| 46 |
|
| 47 |
# Initialize OpenAI client
|
| 48 |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
|
|
|
| 70 |
)
|
| 71 |
|
| 72 |
# Session state initialization
|
| 73 |
+
for key in ['history', 'messages', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'search_queries']:
|
| 74 |
+
st.session_state.setdefault(key, [] if key in ['history', 'messages', 'search_queries'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else 0 if key == 'unique_counter' else None)
|
| 75 |
+
st.session_state.setdefault('builder', None)
|
| 76 |
+
st.session_state.setdefault('model_loaded', False)
|
| 77 |
st.session_state.setdefault('selected_model_type', "Causal LM")
|
| 78 |
st.session_state.setdefault('selected_model', "None")
|
| 79 |
st.session_state.setdefault('gallery_size', 2)
|
| 80 |
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty())
|
| 81 |
+
st.session_state.setdefault('cam0_file', None)
|
| 82 |
+
st.session_state.setdefault('cam1_file', None)
|
| 83 |
|
| 84 |
+
# Model configurations
|
| 85 |
@dataclass
|
| 86 |
class ModelConfig:
|
| 87 |
name: str
|
|
|
|
| 108 |
self.config = None
|
| 109 |
self.model = None
|
| 110 |
self.tokenizer = None
|
| 111 |
+
self.jokes = [
|
| 112 |
+
"Why did the AI go to therapy? Too many layers to unpack! ๐",
|
| 113 |
+
"Training complete! Time for a binary coffee break. โ",
|
| 114 |
+
"I told my neural network a joke; it couldn't stop dropping bits! ๐ค"
|
| 115 |
+
]
|
| 116 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 117 |
with st.spinner(f"Loading {model_path}... โณ"):
|
| 118 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
|
|
| 122 |
if config:
|
| 123 |
self.config = config
|
| 124 |
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 125 |
+
st.success(f"Model loaded! ๐ {random.choice(self.jokes)}")
|
| 126 |
return self
|
| 127 |
def save_model(self, path: str):
|
| 128 |
with st.spinner("Saving model... ๐พ"):
|
|
|
|
| 150 |
def generate(self, prompt: str):
|
| 151 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
| 152 |
|
| 153 |
+
# Utility functions
|
| 154 |
def generate_filename(prompt, ext="png"):
|
| 155 |
central = pytz.timezone('US/Central')
|
| 156 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
| 157 |
+
safe_prompt = re.sub(r'[<>:"/\\|?*\n]', '_', prompt)[:240]
|
| 158 |
return f"{safe_date_time}_{safe_prompt}.{ext}"
|
| 159 |
|
| 160 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
|
|
|
| 183 |
logger.error(f"Failed to download {url}: {e}")
|
| 184 |
return False
|
| 185 |
|
| 186 |
+
# Processing functions
|
| 187 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
| 188 |
start_time = time.time()
|
| 189 |
status = st.empty()
|
|
|
|
| 270 |
except Exception as e:
|
| 271 |
return f"Error processing text with GPT: {str(e)}"
|
| 272 |
|
| 273 |
+
def process_audio(audio_input, text_input=''):
|
| 274 |
with open(audio_input, "rb") as file:
|
| 275 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
| 276 |
+
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
| 277 |
+
completion = client.chat.completions.create(model="gpt-4o-2024-05-13", messages=[{"role": "user", "content": f"{text_input}\n\n{transcription.text}"}])
|
| 278 |
+
return_text = completion.choices[0].message.content
|
| 279 |
+
filename = generate_filename(transcription.text, "md")
|
| 280 |
+
with open(filename, "w", encoding="utf-8") as f:
|
| 281 |
+
f.write(text_input + "\n\n" + return_text)
|
| 282 |
+
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
| 283 |
+
return transcription.text, return_text
|
| 284 |
|
| 285 |
def process_video(video_path, prompt):
|
| 286 |
base64Frames, audio_path = process_video_frames(video_path)
|
| 287 |
with open(video_path, "rb") as file:
|
| 288 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
| 289 |
messages = [{"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{prompt}"}]}]
|
| 290 |
+
response = client.chat.completions.create(model="gpt-4o-2024-05-13", messages=messages)
|
| 291 |
return response.choices[0].message.content
|
| 292 |
|
| 293 |
def process_video_frames(video_path, seconds_per_frame=2):
|
|
|
|
| 328 |
finally:
|
| 329 |
buffer.close()
|
| 330 |
|
| 331 |
+
def extract_python_code(markdown_text):
|
| 332 |
+
pattern = r"```python\s*(.*?)\s*```"
|
| 333 |
+
matches = re.findall(pattern, markdown_text, re.DOTALL)
|
| 334 |
+
return matches
|
| 335 |
+
|
| 336 |
+
# Speech synthesis
|
| 337 |
+
def SpeechSynthesis(result):
|
| 338 |
+
documentHTML5 = f'''
|
| 339 |
+
<!DOCTYPE html>
|
| 340 |
+
<html>
|
| 341 |
+
<head>
|
| 342 |
+
<title>Read It Aloud</title>
|
| 343 |
+
<script type="text/javascript">
|
| 344 |
+
function readAloud() {{
|
| 345 |
+
const text = document.getElementById("textArea").value;
|
| 346 |
+
const speech = new SpeechSynthesisUtterance(text);
|
| 347 |
+
window.speechSynthesis.speak(speech);
|
| 348 |
+
}}
|
| 349 |
+
</script>
|
| 350 |
+
</head>
|
| 351 |
+
<body>
|
| 352 |
+
<h1>๐ Read It Aloud</h1>
|
| 353 |
+
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
|
| 354 |
+
<br>
|
| 355 |
+
<button onclick="readAloud()">๐ Read Aloud</button>
|
| 356 |
+
</body>
|
| 357 |
+
</html>
|
| 358 |
+
'''
|
| 359 |
+
components.html(documentHTML5, width=1280, height=300)
|
| 360 |
+
|
| 361 |
+
# ArXiv search
|
| 362 |
+
def search_arxiv(query):
|
| 363 |
+
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
|
| 364 |
+
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 365 |
+
response1 = client.predict(message="Hello!!", llm_results_use=5, database_choice="Semantic Search", llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", api_name="/update_with_rag_md")
|
| 366 |
+
Question = f'### ๐ {query}\r\n'
|
| 367 |
+
References = response1[0]
|
| 368 |
+
References2 = response1[1]
|
| 369 |
+
filename = generate_filename(query, "md")
|
| 370 |
+
with open(filename, "w", encoding="utf-8") as f:
|
| 371 |
+
f.write(Question + References + References2)
|
| 372 |
+
st.session_state.messages.append({"role": "assistant", "content": References + References2})
|
| 373 |
+
response2 = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
|
| 374 |
+
if len(response2) > 10:
|
| 375 |
+
Answer = response2
|
| 376 |
+
SpeechSynthesis(Answer)
|
| 377 |
+
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + References2
|
| 378 |
+
return results
|
| 379 |
+
return References + References2
|
| 380 |
+
|
| 381 |
+
# Glossary data
|
| 382 |
+
roleplaying_glossary = {
|
| 383 |
+
"๐ค AI Concepts": {
|
| 384 |
+
"MoE (Mixture of Experts) ๐ง ": [
|
| 385 |
+
"As a leading AI health researcher, provide an overview of MoE, MAS, memory, and mirroring in healthcare applications.",
|
| 386 |
+
"Explain how MoE and MAS can be leveraged to create AGI and AMI systems for healthcare, as an AI architect."
|
| 387 |
+
],
|
| 388 |
+
"Multi Agent Systems (MAS) ๐ค": [
|
| 389 |
+
"As a renowned MAS researcher, describe the key characteristics of distributed, autonomous, and cooperative MAS.",
|
| 390 |
+
"Discuss how MAS is applied in robotics, simulations, and decentralized problem-solving, as an AI engineer."
|
| 391 |
+
]
|
| 392 |
+
},
|
| 393 |
+
"๐ ๏ธ AI Tools & Platforms": {
|
| 394 |
+
"ChatDev ๐ฌ": [
|
| 395 |
+
"As a chatbot developer, ask about the features and capabilities ChatDev offers for building conversational AI.",
|
| 396 |
+
"Inquire about the pre-built assets, integrations, and multi-platform support in ChatDev, as a product manager."
|
| 397 |
+
]
|
| 398 |
+
}
|
| 399 |
+
}
|
| 400 |
+
|
| 401 |
+
def display_glossary_grid(roleplaying_glossary):
|
| 402 |
+
search_urls = {
|
| 403 |
+
"๐๐ArXiv": lambda k: f"/?q={quote(k)}",
|
| 404 |
+
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
|
| 405 |
+
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}"
|
| 406 |
+
}
|
| 407 |
+
for category, details in roleplaying_glossary.items():
|
| 408 |
+
st.write(f"### {category}")
|
| 409 |
+
cols = st.columns(len(details))
|
| 410 |
+
for idx, (game, terms) in enumerate(details.items()):
|
| 411 |
+
with cols[idx]:
|
| 412 |
+
st.markdown(f"#### {game}")
|
| 413 |
+
for term in terms:
|
| 414 |
+
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
|
| 415 |
+
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True)
|
| 416 |
+
|
| 417 |
+
# File operations
|
| 418 |
+
def create_zip_of_files(files):
|
| 419 |
+
zip_name = "assets.zip"
|
| 420 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
| 421 |
+
for file in files:
|
| 422 |
+
zipf.write(file)
|
| 423 |
+
return zip_name
|
| 424 |
+
|
| 425 |
+
def get_zip_download_link(zip_file):
|
| 426 |
+
with open(zip_file, 'rb') as f:
|
| 427 |
+
data = f.read()
|
| 428 |
+
b64 = base64.b64encode(data).decode()
|
| 429 |
+
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
| 430 |
+
|
| 431 |
# Sidebar
|
| 432 |
st.sidebar.subheader("Gallery Settings")
|
| 433 |
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
|
| 434 |
|
| 435 |
+
# File sidebar
|
| 436 |
+
def FileSidebar():
|
| 437 |
+
all_files = glob.glob("*.md")
|
| 438 |
+
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
|
| 439 |
+
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
|
| 440 |
+
Files1, Files2 = st.sidebar.columns(2)
|
| 441 |
+
with Files1:
|
| 442 |
+
if st.button("๐ Delete All"):
|
| 443 |
+
for file in all_files:
|
| 444 |
+
os.remove(file)
|
| 445 |
+
st.rerun()
|
| 446 |
+
with Files2:
|
| 447 |
+
if st.button("โฌ๏ธ Download"):
|
| 448 |
+
zip_file = create_zip_of_files(all_files)
|
| 449 |
+
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
|
| 450 |
+
for file in all_files:
|
| 451 |
+
col1, col2, col3, col4 = st.sidebar.columns([1, 6, 1, 1])
|
| 452 |
+
with col1:
|
| 453 |
+
if st.button("๐", key=f"md_{file}"):
|
| 454 |
+
with open(file, "r", encoding='utf-8') as f:
|
| 455 |
+
st.markdown(f.read())
|
| 456 |
+
with col2:
|
| 457 |
+
st.markdown(get_download_link(file, "text/markdown", file))
|
| 458 |
+
with col3:
|
| 459 |
+
if st.button("๐", key=f"open_{file}"):
|
| 460 |
+
with open(file, "r", encoding='utf-8') as f:
|
| 461 |
+
st.text_area("File Contents", f.read(), height=300)
|
| 462 |
+
with col4:
|
| 463 |
+
if st.button("๐", key=f"delete_{file}"):
|
| 464 |
+
os.remove(file)
|
| 465 |
+
st.rerun()
|
| 466 |
+
|
| 467 |
+
FileSidebar()
|
| 468 |
+
|
| 469 |
# Tabs
|
| 470 |
+
tabs = st.tabs(["Camera ๐ท", "Download ๐ฅ", "OCR ๐", "Build ๐ฑ", "Image Gen ๐จ", "PDF ๐", "Image ๐ผ๏ธ", "Audio ๐ต", "Video ๐ฅ", "Code ๐งโ๐ป", "Gallery ๐", "Search ๐", "Glossary ๐"])
|
| 471 |
+
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery, tab_search, tab_glossary) = tabs
|
| 472 |
|
| 473 |
with tab_camera:
|
| 474 |
st.header("Camera Snap ๐ท")
|
|
|
|
| 486 |
|
| 487 |
with tab_download:
|
| 488 |
st.header("Download PDFs ๐ฅ")
|
| 489 |
+
if st.button("Examples ๐"):
|
| 490 |
+
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703"]
|
| 491 |
+
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
| 492 |
+
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
| 493 |
+
if st.button("Robo-Download ๐ค"):
|
| 494 |
urls = url_input.strip().split("\n")
|
| 495 |
progress_bar = st.progress(0)
|
| 496 |
for idx, url in enumerate(urls):
|
|
|
|
| 629 |
elif file.endswith('.mp4'):
|
| 630 |
st.video(file)
|
| 631 |
|
| 632 |
+
with tab_search:
|
| 633 |
+
st.header("ArXiv Search ๐")
|
| 634 |
+
query = st.text_input("Search ArXiv", "")
|
| 635 |
+
if query:
|
| 636 |
+
result = search_arxiv(query)
|
| 637 |
+
st.markdown(result)
|
| 638 |
+
|
| 639 |
+
with tab_glossary:
|
| 640 |
+
st.header("Glossary ๐")
|
| 641 |
+
display_glossary_grid(roleplaying_glossary)
|
| 642 |
+
|
| 643 |
# Update gallery in sidebar
|
| 644 |
def update_gallery():
|
| 645 |
container = st.session_state['asset_gallery_container']
|
|
|
|
| 673 |
st.sidebar.subheader("History ๐")
|
| 674 |
for entry in st.session_state.get("history", []):
|
| 675 |
if entry:
|
| 676 |
+
st.sidebar.write(entry)
|
| 677 |
+
|
| 678 |
+
# Chatbot
|
| 679 |
+
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
|
| 680 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 681 |
+
with st.chat_message("user"):
|
| 682 |
+
st.markdown(prompt)
|
| 683 |
+
with st.chat_message("assistant"):
|
| 684 |
+
completion = client.chat.completions.create(model="gpt-4o-2024-05-13", messages=st.session_state.messages, stream=True)
|
| 685 |
+
response = ""
|
| 686 |
+
for chunk in completion:
|
| 687 |
+
if chunk.choices[0].delta.content:
|
| 688 |
+
response += chunk.choices[0].delta.content
|
| 689 |
+
st.write(response)
|
| 690 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|