Spaces:
Runtime error
Runtime error
Update backupapp.py
Browse files- backupapp.py +78 -1
backupapp.py
CHANGED
@@ -1,6 +1,15 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import re
|
3 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def remove_timestamps(text):
|
6 |
return re.sub(r'\d{1,2}:\d{2}\n', '', text)
|
@@ -41,6 +50,40 @@ def unit_test(input_text):
|
|
41 |
test_jsonl_list = create_jsonl_list(test_text_without_timestamps)
|
42 |
st.write(test_jsonl_list)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
text_input = st.text_area("Enter text:", value="", height=300)
|
45 |
text_without_timestamps = remove_timestamps(text_input)
|
46 |
|
@@ -125,4 +168,38 @@ it be parametrized with a neural net and you apply learning algorithm so I want
|
|
125 |
learning works this is model free reinforcement learning the reinforcement learning has actually been used in practice everywhere but it's
|
126 |
'''
|
127 |
|
128 |
-
unit_test(unit_test_text_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import re
|
4 |
import json
|
5 |
+
import nltk
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
from nltk import FreqDist
|
8 |
+
from graphviz import Digraph
|
9 |
+
from collections import Counter
|
10 |
+
|
11 |
+
nltk.download('punkt')
|
12 |
+
nltk.download('stopwords')
|
13 |
|
14 |
def remove_timestamps(text):
|
15 |
return re.sub(r'\d{1,2}:\d{2}\n', '', text)
|
|
|
50 |
test_jsonl_list = create_jsonl_list(test_text_without_timestamps)
|
51 |
st.write(test_jsonl_list)
|
52 |
|
53 |
+
|
54 |
+
|
55 |
+
def extract_high_information_words(text, top_n=10):
|
56 |
+
words = nltk.word_tokenize(text)
|
57 |
+
words = [word.lower() for word in words if word.isalpha()]
|
58 |
+
|
59 |
+
stop_words = set(stopwords.words('english'))
|
60 |
+
filtered_words = [word for word in words if word not in stop_words]
|
61 |
+
|
62 |
+
freq_dist = FreqDist(filtered_words)
|
63 |
+
high_information_words = [word for word, _ in freq_dist.most_common(top_n)]
|
64 |
+
|
65 |
+
return high_information_words
|
66 |
+
|
67 |
+
|
68 |
+
def create_relationship_graph(words):
|
69 |
+
graph = Digraph()
|
70 |
+
|
71 |
+
for index, word in enumerate(words):
|
72 |
+
graph.node(str(index), word)
|
73 |
+
|
74 |
+
if index > 0:
|
75 |
+
graph.edge(str(index - 1), str(index), label=str(index))
|
76 |
+
|
77 |
+
return graph
|
78 |
+
|
79 |
+
|
80 |
+
def display_relationship_graph(words):
|
81 |
+
graph = create_relationship_graph(words)
|
82 |
+
st.graphviz_chart(graph)
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
text_input = st.text_area("Enter text:", value="", height=300)
|
88 |
text_without_timestamps = remove_timestamps(text_input)
|
89 |
|
|
|
168 |
learning works this is model free reinforcement learning the reinforcement learning has actually been used in practice everywhere but it's
|
169 |
'''
|
170 |
|
171 |
+
unit_test(unit_test_text_2)
|
172 |
+
|
173 |
+
unit_test_text_3 = '''
|
174 |
+
ort try something new add
|
175 |
+
9:17
|
176 |
+
randomness directions and compare the result to your expectation if the result
|
177 |
+
9:25
|
178 |
+
surprises you if you find that the results exceeded your expectation then
|
179 |
+
9:31
|
180 |
+
change your parameters to take those actions in the future that's it this is
|
181 |
+
9:36
|
182 |
+
the fool idea of reinforcement learning try it out see if you like it and if you do do more of that in the future and
|
183 |
+
9:44
|
184 |
+
that's it that's literally it this is the core idea now it turns out it's not
|
185 |
+
9:49
|
186 |
+
difficult to formalize mathematically but this is really what's going on if in a neural network
|
187 |
+
|
188 |
+
'''
|
189 |
+
|
190 |
+
unit_test(unit_test_text_3)
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
# Adding new functionality to the existing code
|
197 |
+
text_without_timestamps = remove_timestamps(unit_test_text_2)
|
198 |
+
top_words = extract_high_information_words(text_without_timestamps, 10)
|
199 |
+
st.markdown("**Top 10 High Information Words:**")
|
200 |
+
st.write(top_words)
|
201 |
+
|
202 |
+
st.markdown("**Relationship Graph:**")
|
203 |
+
display_relationship_graph(top_words)
|
204 |
+
|
205 |
+
|