Spaces:
Sleeping
Sleeping
Update backup.app.py
Browse files- backup.app.py +60 -28
backup.app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import re
|
| 3 |
import nltk
|
|
|
|
| 4 |
from nltk.corpus import stopwords
|
| 5 |
from nltk import FreqDist
|
| 6 |
from graphviz import Digraph
|
|
@@ -9,56 +10,80 @@ nltk.download('punkt')
|
|
| 9 |
nltk.download('stopwords')
|
| 10 |
|
| 11 |
def remove_timestamps(text):
|
| 12 |
-
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
|
| 13 |
-
|
| 14 |
-
def process_text(text):
|
| 15 |
-
lines = text.split("\n")
|
| 16 |
-
processed_lines = []
|
| 17 |
-
|
| 18 |
-
for line in lines:
|
| 19 |
-
if line:
|
| 20 |
-
processed_lines.append(line)
|
| 21 |
-
|
| 22 |
-
outline = ""
|
| 23 |
-
for i, line in enumerate(processed_lines):
|
| 24 |
-
if i % 2 == 0:
|
| 25 |
-
outline += f"**{line}**\n"
|
| 26 |
-
else:
|
| 27 |
-
outline += f"- {line} 😄\n"
|
| 28 |
-
|
| 29 |
-
return outline
|
| 30 |
|
| 31 |
def extract_high_information_words(text, top_n=10):
|
| 32 |
words = nltk.word_tokenize(text)
|
| 33 |
words = [word.lower() for word in words if word.isalpha()]
|
| 34 |
-
|
| 35 |
stop_words = set(stopwords.words('english'))
|
| 36 |
filtered_words = [word for word in words if word not in stop_words]
|
| 37 |
-
|
| 38 |
freq_dist = FreqDist(filtered_words)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
return high_information_words
|
| 42 |
|
| 43 |
def create_relationship_graph(words):
|
| 44 |
graph = Digraph()
|
| 45 |
-
|
| 46 |
for index, word in enumerate(words):
|
| 47 |
graph.node(str(index), word)
|
| 48 |
-
|
| 49 |
if index > 0:
|
| 50 |
graph.edge(str(index - 1), str(index), label=str(index))
|
| 51 |
-
|
| 52 |
return graph
|
| 53 |
|
| 54 |
def display_relationship_graph(words):
|
| 55 |
graph = create_relationship_graph(words)
|
| 56 |
st.graphviz_chart(graph)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
uploaded_file = st.file_uploader("Choose a .txt file", type=['txt'])
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
file_text = uploaded_file.read().decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
text_without_timestamps = remove_timestamps(file_text)
|
| 63 |
|
| 64 |
top_words = extract_high_information_words(text_without_timestamps, 10)
|
|
@@ -66,4 +91,11 @@ if uploaded_file:
|
|
| 66 |
st.write(top_words)
|
| 67 |
|
| 68 |
st.markdown("**Relationship Graph:**")
|
| 69 |
-
display_relationship_graph(top_words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import re
|
| 3 |
import nltk
|
| 4 |
+
import os
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
from nltk import FreqDist
|
| 7 |
from graphviz import Digraph
|
|
|
|
| 10 |
nltk.download('stopwords')
|
| 11 |
|
| 12 |
def remove_timestamps(text):
|
| 13 |
+
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def extract_high_information_words(text, top_n=10):
|
| 16 |
words = nltk.word_tokenize(text)
|
| 17 |
words = [word.lower() for word in words if word.isalpha()]
|
|
|
|
| 18 |
stop_words = set(stopwords.words('english'))
|
| 19 |
filtered_words = [word for word in words if word not in stop_words]
|
|
|
|
| 20 |
freq_dist = FreqDist(filtered_words)
|
| 21 |
+
return [word for word, _ in freq_dist.most_common(top_n)]
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def create_relationship_graph(words):
|
| 24 |
graph = Digraph()
|
|
|
|
| 25 |
for index, word in enumerate(words):
|
| 26 |
graph.node(str(index), word)
|
|
|
|
| 27 |
if index > 0:
|
| 28 |
graph.edge(str(index - 1), str(index), label=str(index))
|
|
|
|
| 29 |
return graph
|
| 30 |
|
| 31 |
def display_relationship_graph(words):
|
| 32 |
graph = create_relationship_graph(words)
|
| 33 |
st.graphviz_chart(graph)
|
| 34 |
|
| 35 |
+
def extract_context_words(text, high_information_words):
|
| 36 |
+
words = nltk.word_tokenize(text)
|
| 37 |
+
context_words = []
|
| 38 |
+
for index, word in enumerate(words):
|
| 39 |
+
if word.lower() in high_information_words:
|
| 40 |
+
before_word = words[index - 1] if index > 0 else None
|
| 41 |
+
after_word = words[index + 1] if index < len(words) - 1 else None
|
| 42 |
+
context_words.append((before_word, word, after_word))
|
| 43 |
+
return context_words
|
| 44 |
+
|
| 45 |
+
def create_context_graph(context_words):
|
| 46 |
+
graph = Digraph()
|
| 47 |
+
for index, (before_word, high_info_word, after_word) in enumerate(context_words):
|
| 48 |
+
graph.node(f'before{index}', before_word, shape='box') if before_word else None
|
| 49 |
+
graph.node(f'high{index}', high_info_word, shape='ellipse')
|
| 50 |
+
graph.node(f'after{index}', after_word, shape='diamond') if after_word else None
|
| 51 |
+
if before_word:
|
| 52 |
+
graph.edge(f'before{index}', f'high{index}')
|
| 53 |
+
if after_word:
|
| 54 |
+
graph.edge(f'high{index}', f'after{index}')
|
| 55 |
+
return graph
|
| 56 |
+
|
| 57 |
+
def display_context_graph(context_words):
|
| 58 |
+
graph = create_context_graph(context_words)
|
| 59 |
+
st.graphviz_chart(graph)
|
| 60 |
+
|
| 61 |
+
def display_context_table(context_words):
|
| 62 |
+
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
|
| 63 |
+
for before, high, after in context_words:
|
| 64 |
+
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
|
| 65 |
+
st.markdown(table)
|
| 66 |
+
|
| 67 |
+
def load_example_files():
|
| 68 |
+
example_files = [f for f in os.listdir() if f.endswith('.txt')]
|
| 69 |
+
selected_file = st.selectbox("Select an example file:", example_files)
|
| 70 |
+
if st.button(f"Load {selected_file}"):
|
| 71 |
+
with open(selected_file, 'r', encoding="utf-8") as file:
|
| 72 |
+
return file.read()
|
| 73 |
+
return None
|
| 74 |
+
|
| 75 |
uploaded_file = st.file_uploader("Choose a .txt file", type=['txt'])
|
| 76 |
|
| 77 |
+
example_text = load_example_files()
|
| 78 |
+
|
| 79 |
+
if example_text:
|
| 80 |
+
file_text = example_text
|
| 81 |
+
elif uploaded_file:
|
| 82 |
file_text = uploaded_file.read().decode("utf-8")
|
| 83 |
+
else:
|
| 84 |
+
file_text = ""
|
| 85 |
+
|
| 86 |
+
if file_text:
|
| 87 |
text_without_timestamps = remove_timestamps(file_text)
|
| 88 |
|
| 89 |
top_words = extract_high_information_words(text_without_timestamps, 10)
|
|
|
|
| 91 |
st.write(top_words)
|
| 92 |
|
| 93 |
st.markdown("**Relationship Graph:**")
|
| 94 |
+
display_relationship_graph(top_words)
|
| 95 |
+
|
| 96 |
+
context_words = extract_context_words(text_without_timestamps, top_words)
|
| 97 |
+
st.markdown("**Context Graph:**")
|
| 98 |
+
display_context_graph(context_words)
|
| 99 |
+
|
| 100 |
+
st.markdown("**Context Table:**")
|
| 101 |
+
display_context_table(context_words)
|