import streamlit as st import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import linear_kernel, cosine_similarity import nltk from nltk.corpus import stopwords from nltk import FreqDist import re import os import base64 from graphviz import Digraph from io import BytesIO import networkx as nx import matplotlib.pyplot as plt st.set_page_config( page_title="πŸ“ΊTranscriptπŸ“œEDAπŸ”NLTK", page_icon="🌠", layout="wide", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': "https://huggingface.co/awacke1", 'About': "https://huggingface.co/awacke1" } ) st.markdown(''' 1. πŸ” **Transcript Insights Using Exploratory Data Analysis (EDA)** πŸ“Š - Unveil hidden patterns πŸ•΅οΈβ€β™‚οΈ and insights 🧠 in your transcripts. πŸ†. 2. πŸ“œ **Natural Language Toolkit (NLTK)** πŸ› οΈ:- your compass 🧭 in the vast landscape of NLP. 3. πŸ“Ί **Transcript Analysis** πŸ“ˆ:Speech recognition πŸŽ™οΈ and thematic extraction 🌐, audiovisual content to actionable insights πŸ”‘. ''') nltk.download('punkt') nltk.download('stopwords') def remove_timestamps(text): return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text) def extract_high_information_words(text, top_n=10): words = nltk.word_tokenize(text) words = [word.lower() for word in words if word.isalpha()] stop_words = set(stopwords.words('english')) filtered_words = [word for word in words if word not in stop_words] freq_dist = FreqDist(filtered_words) return [word for word, _ in freq_dist.most_common(top_n)] def create_relationship_graph(words): graph = Digraph() for index, word in enumerate(words): graph.node(str(index), word) if index > 0: graph.edge(str(index - 1), str(index), label=word) return graph def display_relationship_graph(words): graph = create_relationship_graph(words) st.graphviz_chart(graph) def extract_context_words(text, high_information_words): words = nltk.word_tokenize(text) context_words = [] for index, word in enumerate(words): if word.lower() in high_information_words: before_word = words[index - 1] if index > 0 else None after_word = words[index + 1] if index < len(words) - 1 else None context_words.append((before_word, word, after_word)) return context_words def create_context_graph(context_words): graph = Digraph() for index, (before_word, high_info_word, after_word) in enumerate(context_words): if before_word: graph.node(f'before{index}', before_word, shape='box') graph.node(f'high{index}', high_info_word, shape='ellipse') if after_word: graph.node(f'after{index}', after_word, shape='diamond') if before_word: graph.edge(f'before{index}', f'high{index}', label=before_word) if after_word: graph.edge(f'high{index}', f'after{index}', label=after_word) return graph def display_context_graph(context_words): graph = create_context_graph(context_words) st.graphviz_chart(graph) def display_context_table(context_words): table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n" for before, high, after in context_words: table += f"| {before if before else ''} | {high} | {after if after else ''} |\n" st.markdown(table) def get_txt_files(): excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'} txt_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files] df = pd.DataFrame({ 'File Name': txt_files, 'Full Path': [os.path.abspath(f) for f in txt_files] }) return df def cluster_sentences(sentences, num_clusters): sentences = [sentence for sentence in sentences if len(sentence) > 10] if len(sentences) < num_clusters: num_clusters = len(sentences) vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(sentences) kmeans = KMeans(n_clusters=num_clusters, random_state=42) kmeans.fit(X) cluster_centers = kmeans.cluster_centers_ clustered_sentences = [[] for _ in range(num_clusters)] for i, label in enumerate(kmeans.labels_): similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0] clustered_sentences[label].append((similarity, sentences[i])) for cluster in clustered_sentences: cluster.sort(reverse=True) return [[sentence for _, sentence in cluster] for cluster in clustered_sentences] def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πŸ’Ύ Save"): buffer = BytesIO() buffer.write(text_to_download.encode()) buffer.seek(0) b64 = base64.b64encode(buffer.read()).decode() href = f'{button_label}' return href def get_high_info_words_per_cluster(cluster_sentences, num_words=5): cluster_high_info_words = [] for cluster in cluster_sentences: cluster_text = " ".join(cluster) high_info_words = extract_high_information_words(cluster_text, num_words) cluster_high_info_words.append(high_info_words) return cluster_high_info_words def plot_cluster_words(cluster_sentences): for i, cluster in enumerate(cluster_sentences): cluster_text = " ".join(cluster) words = re.findall(r'\b[a-z]{4,}\b', cluster_text) word_freq = FreqDist(words) top_words = [word for word, _ in word_freq.most_common(20)] vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(top_words) word_vectors = X.toarray() similarity_matrix = cosine_similarity(word_vectors) G = nx.from_numpy_array(similarity_matrix) pos = nx.spring_layout(G, k=0.5) plt.figure(figsize=(8, 6)) nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, labels={i: word for i, word in enumerate(top_words)}, node_color='skyblue', edge_color='gray') plt.axis('off') plt.title(f"Cluster {i+1} Word Arrangement") st.pyplot(plt) st.markdown(f"**Cluster {i+1} Details:**") st.markdown(f"Top Words: {', '.join(top_words)}") st.markdown(f"Number of Sentences: {len(cluster)}") st.markdown("---") def process_file(file_path): with open(file_path, 'r', encoding="utf-8") as file: file_text = file.read() text_without_timestamps = remove_timestamps(file_text) top_words = extract_high_information_words(text_without_timestamps, 10) with st.expander("πŸ“Š Top 10 High Information Words"): st.write(top_words) with st.expander("πŸ“ˆ Relationship Graph"): display_relationship_graph(top_words) context_words = extract_context_words(text_without_timestamps, top_words) with st.expander("πŸ”— Context Graph"): display_context_graph(context_words) with st.expander("πŸ“‘ Context Table"): display_context_table(context_words) sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10] num_sentences = len(sentences) st.write(f"Total Sentences: {num_sentences}") num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5) clustered_sentences = cluster_sentences(sentences, num_clusters) col1, col2 = st.columns(2) with col1: st.subheader("Original Text") original_text = "\n".join(sentences) st.text_area("Original Sentences", value=original_text, height=400) with col2: st.subheader("Clustered Text") clusters = "" clustered_text = "" cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences) for i, cluster in enumerate(clustered_sentences): cluster_text = "\n".join(cluster) high_info_words = ", ".join(cluster_high_info_words[i]) clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n" clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n" st.text_area("Clusters", value=clusters, height=200) st.text_area("Clustered Sentences", value=clustered_text, height=200) clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster] if set(sentences) == set(clustered_sentences_flat): st.write("βœ… All sentences are accounted for in the clustered output.") else: st.write("❌ Some sentences are missing in the clustered output.") plot_cluster_words(clustered_sentences) def perform_eda(file_name): st.subheader(f"EDA for {file_name}") process_file(os.path.abspath(file_name)) st.title("πŸ“Ί Transcript Analysis πŸ“Š") txt_files_df = get_txt_files() st.write("Available .txt files:") st.dataframe(txt_files_df[['File Name']]) st.write("Select a file to perform EDA:") cols = st.columns(len(txt_files_df)) for i, (_, row) in enumerate(txt_files_df.iterrows()): if cols[i].button(f":file_folder: {row['File Name']}"): perform_eda(row['File Name']) if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Ask a question about the data"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) response = f"You asked: {prompt}\n\nThis is a placeholder response. In a real application, you would process the user's question and provide an answer based on the data and EDA results." st.session_state.messages.append({"role": "assistant", "content": response}) with st.chat_message("assistant"): st.markdown(response) st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")