File size: 2,514 Bytes
e32876b
 
 
f016625
e32876b
8e91ba0
e32876b
 
 
 
 
 
 
 
 
8e91ba0
 
e32876b
8e91ba0
 
 
 
 
e32876b
8e91ba0
 
 
 
 
1971026
 
 
 
8e91ba0
1971026
 
 
 
 
 
 
 
 
f016625
1971026
 
f016625
1971026
 
 
 
 
f016625
1971026
 
f016625
8e91ba0
 
 
f016625
8e91ba0
 
e32876b
 
8e91ba0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import streamlit as st
import tweepy as tw
import pandas as pd
import matplotlib.pyplot as plt
from transformers import pipeline
import os

consumer_key = 'OCgWzDW6PaBvBeVimmGBqdAg1'
consumer_secret = 'tBKnmyg5Jfsewkpmw74gxHZbbZkGIH6Ee4rsM0lD1vFL7SrEIM'
access_token = '1449663645412065281-LNjZoEO9lxdtxPcmLtM35BRdIKYHpk'
access_token_secret = 'FL3SGsUWSzPVFnG7bNMnyh4vYK8W1SlABBNtdF7Xcbh7a'
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)
classifier = pipeline('sentiment-analysis')
FILE_NAME = 'query_history.csv'
HEADERS = ['Search Query', 'Number of Tweets', 'Results', 'Date']

if not os.path.isfile(FILE_NAME):
    df = pd.DataFrame(columns=HEADERS)
    df.to_csv(FILE_NAME, index=False)

st.set_page_config(page_title='πŸ˜ƒ Twitter Sentiment Analysis', layout='wide')

def display_history():
    df = pd.read_csv(FILE_NAME)
    st.dataframe(df.style.highlight_max(axis=0))

def run():
    with st.form(key='Enter name'):
        search_words = st.text_input('Enter a word or phrase you want to know about')
        number_of_tweets = st.number_input('How many tweets do you want to see? (maximum 50)', 1, 50, 50)
        submit_button = st.form_submit_button(label='Submit')

        if submit_button:
            unique_tweets, tweet_list, sentiment_list = set(), [], []
            tweets = tw.Cursor(api.search_tweets, q=search_words, lang="en").items(number_of_tweets)
            for tweet in tweets:
                if tweet.text not in unique_tweets:
                    unique_tweets.add(tweet.text)
                    tweet_list.append(tweet.text)
                    p = classifier(tweet.text)
                    sentiment_list.append(p[0]['label'])

            df = pd.DataFrame(list(zip(tweet_list, sentiment_list)), columns=['Tweets', 'Sentiment'])
            st.write(df)

            summary = df.groupby('Sentiment').size().reset_index(name='Counts')
            fig, ax = plt.subplots()
            ax.pie(summary['Counts'], labels=summary['Sentiment'], autopct='%1.1f%%', startangle=90)
            ax.axis('equal')
            st.pyplot(fig)

            with open(FILE_NAME, mode='a', newline='') as file:
                df.to_csv(file, header=False, index=False)

    if st.button('Clear History'):
        os.remove(FILE_NAME)
        st.write('History has been cleared.')

    if st.button('Display History'):
        display_history()

if __name__=='__main__':
    run()