File size: 2,672 Bytes
e83143a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
import mahotas as mh
import pandas as pd
import plotly.express as px

# Define a list of medical conditions
conditions = [
    {"name": "Depression", "test_for": "Patient Health Questionnaire-9 (PHQ-9)"},
    {"name": "Anxiety", "test_for": "Generalized Anxiety Disorder-7 (GAD-7)"},
    {"name": "Diabetes", "test_for": "Hemoglobin A1C test"},
    {"name": "Hypertension", "test_for": "Blood pressure measurement"},
    {"name": "Asthma", "test_for": "Pulmonary function test"},
    {"name": "Cancer", "test_for": "Biopsy or imaging tests (e.g., CT scan, MRI)"},
    {"name": "Arthritis", "test_for": "X-ray, MRI, or ultrasound"},
    {"name": "Heart disease", "test_for": "Electrocardiogram (ECG)"},
    {"name": "Obesity", "test_for": "Body mass index (BMI)"},
    {"name": "Substance use disorder", "test_for": "Substance Abuse Subtle Screening Inventory (SASSI)"}
]

# Define a function to process images using Mahotas
def process_image(image):
    # Convert the image to grayscale
    grayscale_image = mh.colors.rgb2gray(image)
    # Apply a Gaussian filter to the image to reduce noise
    filtered_image = mh.gaussian_filter(grayscale_image, 4)
    # Threshold the image to create a binary image
    binary_image = filtered_image > mh.otsu(filtered_image)
    # Compute the connected components in the binary image
    labels, num_labels = mh.label(binary_image)
    # Compute the size of each connected component
    sizes = mh.labeled.labeled_size(labels)
    # Sort the sizes in descending order
    sorted_sizes = sorted(sizes, reverse=True)
    # Return the top 10 sizes
    return sorted_sizes[:10]

# Define the Streamlit app
def app():
    # Add a title to the app
    st.title("Mahotas Demo")

    # Add a sidebar to the app
    st.sidebar.title("Medical Conditions")
    selected_condition = st.sidebar.selectbox("Select a condition", [c["name"] for c in conditions])

    # Get the selected condition
    condition = next(c for c in conditions if c["name"] == selected_condition)

    # Display the selected condition
    st.header(condition["name"])
    st.write("Test for:", condition["test_for"])

    # Load an example medical image
    image = mh.imread("https://i.imgur.com/kPQoD8C.jpg")

    # Process the image using Mahotas
    sizes = process_image(image)

    # Display the top 10 connected component sizes
    df = pd.DataFrame({"Size": sizes})
    st.write(df)

    # Create a sunburst chart using Plotly
    fig = px.sunburst(
        df,
        path=["Size"],
        values="Size",
        color="Size",
        color_continuous_scale="blues"
    )
    st.plotly_chart(fig)

if __name__ == "__main__":
    app()