import streamlit as st import mahotas as mh import pandas as pd import plotly.express as px import urllib.request from skimage import io # Define a list of medical conditions conditions = [ {"name": "Depression", "test_for": "Patient Health Questionnaire-9 (PHQ-9)"}, {"name": "Anxiety", "test_for": "Generalized Anxiety Disorder-7 (GAD-7)"}, {"name": "Diabetes", "test_for": "Hemoglobin A1C test"}, {"name": "Hypertension", "test_for": "Blood pressure measurement"}, {"name": "Asthma", "test_for": "Pulmonary function test"}, {"name": "Cancer", "test_for": "Biopsy or imaging tests (e.g., CT scan, MRI)"}, {"name": "Arthritis", "test_for": "X-ray, MRI, or ultrasound"}, {"name": "Heart disease", "test_for": "Electrocardiogram (ECG)"}, {"name": "Obesity", "test_for": "Body mass index (BMI)"}, {"name": "Substance use disorder", "test_for": "Substance Abuse Subtle Screening Inventory (SASSI)"} ] # Define a function to process images using Mahotas def process_image(image): # Convert the image to grayscale grayscale_image = mh.colors.rgb2gray(image) # Apply a Gaussian filter to the image to reduce noise filtered_image = mh.gaussian_filter(grayscale_image, 4) # Threshold the image to create a binary image binary_image = filtered_image > mh.otsu(filtered_image) # Compute the connected components in the binary image labels, num_labels = mh.label(binary_image) # Compute the size of each connected component sizes = mh.labeled.labeled_size(labels) # Sort the sizes in descending order sorted_sizes = sorted(sizes, reverse=True) # Return the top 10 sizes return sorted_sizes[:10] # Define the Streamlit app def app(): # Add a title to the app st.title("Mahotas Demo") # Add a sidebar to the app st.sidebar.title("Medical Conditions") selected_condition = st.sidebar.selectbox("Select a condition", [c["name"] for c in conditions]) # Get the selected condition condition = next(c for c in conditions if c["name"] == selected_condition) # Display the selected condition st.header(condition["name"]) st.write("Test for:", condition["test_for"]) # Load an example medical image if selected_condition == "Depression": image_url = "https://i.imgur.com/kPQoD8C.jpg" elif selected_condition == "Anxiety": image_url = "https://i.imgur.com/ZWyKjJN.jpg" elif selected_condition == "Diabetes": image_url = "https://i.imgur.com/1gOEMO5.jpg" elif selected_condition == "Hypertension": image_url = "https://i.imgur.com/BoSUwio.jpg" elif selected_condition == "Asthma": image_url = "https://i.imgur.com/BLKjzJF.jpg" elif selected_condition == "Cancer": image_url = "https://i.imgur.com/nq3vV8.jpg" elif selected_condition == "Arthritis": image_url = "https://i.imgur.com/ffzd6Fo.jpg" elif selected_condition == "Heart disease": image_url = "https://i.imgur.com/1I7axhd.jpg" elif selected_condition == "Obesity": image_url = "https://i.imgur.com/nZ1EjJr.jpg" else: image_url = "https://i.imgur.com/RUBZOWF.jpg" image = io.imread(image_url) # Process the image using Mahotas sizes = process_image(image) # Display the top 10 connected component sizes df = pd.DataFrame({"Size": sizes}) st.write(df) # Create a sunburst chart using Plotly fig = px.sunburst( df, path=["Size"], values="Size", color="Size", color_continuous_scale="blues" ) st.plotly_chart(fig) st.markdown(""" # Alternate Image Links Per Condition: Depression: https://www.pexels.com/photo/woman-sitting-on-grass-field-while-holding-her-head-7127866/ Anxiety: https://www.pexels.com/photo/woman-sitting-on-rock-and-looking-at-the-ocean-7119798/ Diabetes: https://www.pexels.com/photo/man-taking-blood-sugar-test-4050305/ Hypertension: https://www.pexels.com/photo/woman-measuring-blood-pressure-with-sphygmomanometer-5691686/ Asthma: https://www.pexels.com/photo/woman-having-asthma-attack-in-park-7127511/ Cancer: https://www.pexels.com/photo/close-up-of-pink-ribbon-on-cancer-awareness-banner-4219366/ Arthritis: https://www.pexels.com/photo/man-with-back-pain-lying-on-bed-4050323/ Heart disease: https://www.pexels.com/photo/woman-touching-chest-during-chest-pain-7127487/ Obesity: https://www.pexels.com/photo/woman-in-black-pants-lying-on-bed-7127516/ """) app()