File size: 5,342 Bytes
fbd3a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from huggingface_hub import InferenceClient
import re
from streaming_stt_nemo import Model
import torch
import random
import pandas as pd
from datetime import datetime
import base64
import io
import json

default_lang = "en"
engines = { default_lang: Model(default_lang) }

def transcribe(audio):
    lang = "en"
    model = engines[lang]
    text = model.stt_file(audio)[0]
    return text

HF_TOKEN = os.environ.get("HF_TOKEN", None)

def client_fn(model):
    if "Mixtral" in model:
        return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
    elif "Llama" in model:
        return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
    elif "Mistral" in model:
        return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
    elif "Phi" in model:
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
    else: 
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")

def randomize_seed_fn(seed: int) -> int:
    seed = random.randint(0, 999999)
    return seed

system_instructions1 = """
[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark.' 
Keep conversation friendly, short, clear, and concise. 
Avoid unnecessary introductions and answer the user's questions directly. 
Respond in a normal, conversational manner while being friendly and helpful.
[USER]
"""

# Initialize an empty DataFrame to store the history
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])

def save_history():
    history_df.to_json('chat_history.json', orient='records')

def load_history():
    global history_df
    try:
        history_df = pd.read_json('chat_history.json', orient='records')
    except FileNotFoundError:
        history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
    return history_df

def models(text, model="Mixtral 8x7B", seed=42):
    global history_df
    
    seed = int(randomize_seed_fn(seed))
    generator = torch.Generator().manual_seed(seed)  
    
    client = client_fn(model)
    
    generate_kwargs = dict(
        max_new_tokens=300,
        seed=seed
    )    
    formatted_prompt = system_instructions1 + text + "[JARVIS]"
    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
    
    # Add the current interaction to the history DataFrame
    new_row = pd.DataFrame({
        'Timestamp': [datetime.now().strftime("%Y-%m-%d %H:%M:%S")],  # Convert to string
        'Request': [text],
        'Response': [output]
    })
    history_df = pd.concat([history_df, new_row], ignore_index=True)
    save_history()
    
    return output

async def respond(audio, model, seed):
    user = transcribe(audio)
    reply = models(user, model, seed)
    communicate = edge_tts.Communicate(reply)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path, gr.Audio.update(interactive=True)

def display_history():
    return load_history()

def download_history():
    csv_buffer = io.StringIO()
    history_df.to_csv(csv_buffer, index=False)
    csv_string = csv_buffer.getvalue()
    b64 = base64.b64encode(csv_string.encode()).decode()
    href = f'data:text/csv;base64,{b64}'
    return gr.HTML(f'<a href="{href}" download="chat_history.csv">Download Chat History</a>')

DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
        ### <center>A personal Assistant of Tony Stark for YOU
        ### <center>Voice Chat with your personal Assistant</center>
        """

with gr.Blocks(css="style.css") as demo:    
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        select = gr.Dropdown([
            'Mixtral 8x7B',
            'Llama 3 8B',
            'Mistral 7B v0.3',
            'Phi 3 mini',
        ],
        value="Mistral 7B v0.3",
        label="Model"
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=999999,
            step=1,
            value=0,
            visible=False
        )
    
    input_audio = gr.Audio(label="User", sources="microphone", type="filepath")
    output_audio = gr.Audio(label="AI", type="filepath", autoplay=True)
    
    # Add a DataFrame to display the history
    history_display = gr.DataFrame(label="Query History")
    
    # Add a download button for the history
    download_button = gr.Button("Download History")
    download_link = gr.HTML()
    
    def process_audio(audio, model, seed):
        response, audio_update = asyncio.run(respond(audio, model, seed))
        return response, audio_update, display_history()

    input_audio.change(
        fn=process_audio,
        inputs=[input_audio, select, seed],
        outputs=[output_audio, input_audio, history_display]
    )
    
    # Connect the download button to the download function
    download_button.click(fn=download_history, outputs=[download_link])

    # Load history when the page is refreshed
    demo.load(fn=display_history, outputs=[history_display])

if __name__ == "__main__":
    demo.queue(max_size=200).launch(share=True)