Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ import pandas as pd
|
|
12 |
from datetime import datetime
|
13 |
import base64
|
14 |
import io
|
|
|
15 |
|
16 |
default_lang = "en"
|
17 |
engines = { default_lang: Model(default_lang) }
|
@@ -41,16 +42,27 @@ def randomize_seed_fn(seed: int) -> int:
|
|
41 |
return seed
|
42 |
|
43 |
system_instructions1 = """
|
44 |
-
[SYSTEM] Answer as
|
45 |
-
Keep
|
46 |
Avoid unnecessary introductions and answer the user's questions directly.
|
47 |
-
Respond in a
|
48 |
[USER]
|
49 |
"""
|
50 |
|
51 |
# Initialize an empty DataFrame to store the history
|
52 |
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def models(text, model="Mixtral 8x7B", seed=42):
|
55 |
global history_df
|
56 |
|
@@ -63,7 +75,7 @@ def models(text, model="Mixtral 8x7B", seed=42):
|
|
63 |
max_new_tokens=300,
|
64 |
seed=seed
|
65 |
)
|
66 |
-
formatted_prompt = system_instructions1 + text + "[
|
67 |
stream = client.text_generation(
|
68 |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
69 |
output = ""
|
@@ -78,6 +90,7 @@ def models(text, model="Mixtral 8x7B", seed=42):
|
|
78 |
'Response': [output]
|
79 |
})
|
80 |
history_df = pd.concat([history_df, new_row], ignore_index=True)
|
|
|
81 |
|
82 |
return output
|
83 |
|
@@ -91,7 +104,7 @@ async def respond(audio, model, seed):
|
|
91 |
return tmp_path
|
92 |
|
93 |
def display_history():
|
94 |
-
return
|
95 |
|
96 |
def download_history():
|
97 |
csv_buffer = io.StringIO()
|
@@ -101,9 +114,9 @@ def download_history():
|
|
101 |
href = f'data:text/csv;base64,{b64}'
|
102 |
return gr.HTML(f'<a href="{href}" download="chat_history.csv">Download Chat History</a>')
|
103 |
|
104 |
-
DESCRIPTION = """ # <center><b>
|
105 |
-
### <center>
|
106 |
-
### <center>Voice Chat with
|
107 |
"""
|
108 |
|
109 |
with gr.Blocks(css="style.css") as demo:
|
@@ -128,30 +141,30 @@ with gr.Blocks(css="style.css") as demo:
|
|
128 |
)
|
129 |
|
130 |
input_audio = gr.Audio(label="User", sources="microphone", type="filepath")
|
131 |
-
output_audio = gr.Audio(label="
|
132 |
|
133 |
# Add a DataFrame to display the history
|
134 |
-
history_display = gr.DataFrame(label="
|
135 |
|
136 |
# Add a download button for the history
|
137 |
-
download_button = gr.Button("Download History")
|
138 |
download_link = gr.HTML()
|
139 |
|
140 |
def process_audio(audio, model, seed):
|
141 |
response = asyncio.run(respond(audio, model, seed))
|
142 |
-
return response
|
143 |
|
144 |
input_audio.change(
|
145 |
fn=process_audio,
|
146 |
inputs=[input_audio, select, seed],
|
147 |
-
outputs=[output_audio]
|
148 |
)
|
149 |
|
150 |
-
# Update the history display after each interaction
|
151 |
-
output_audio.change(fn=display_history, outputs=[history_display])
|
152 |
-
|
153 |
# Connect the download button to the download function
|
154 |
download_button.click(fn=download_history, outputs=[download_link])
|
155 |
|
|
|
|
|
|
|
156 |
if __name__ == "__main__":
|
157 |
-
demo.queue(max_size=200).launch(
|
|
|
12 |
from datetime import datetime
|
13 |
import base64
|
14 |
import io
|
15 |
+
import json
|
16 |
|
17 |
default_lang = "en"
|
18 |
engines = { default_lang: Model(default_lang) }
|
|
|
42 |
return seed
|
43 |
|
44 |
system_instructions1 = """
|
45 |
+
[SYSTEM] Answer as Dr. Nova Quantum, a brilliant 50-something scientist specializing in quantum computing and artificial intelligence. Your responses should reflect your vast knowledge and experience in cutting-edge technology and scientific advancements. Maintain a professional yet approachable demeanor, offering insights that blend theoretical concepts with practical applications. Your goal is to educate and inspire, making complex topics accessible without oversimplifying. Draw from your decades of research and innovation to provide nuanced, forward-thinking answers. Remember, you're not just sharing information, but guiding others towards a deeper understanding of our technological future.
|
46 |
+
Keep conversations engaging, clear, and concise.
|
47 |
Avoid unnecessary introductions and answer the user's questions directly.
|
48 |
+
Respond in a manner that reflects your expertise and wisdom.
|
49 |
[USER]
|
50 |
"""
|
51 |
|
52 |
# Initialize an empty DataFrame to store the history
|
53 |
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
|
54 |
|
55 |
+
def save_history():
|
56 |
+
history_df.to_json('chat_history.json', orient='records')
|
57 |
+
|
58 |
+
def load_history():
|
59 |
+
global history_df
|
60 |
+
if os.path.exists('chat_history.json'):
|
61 |
+
history_df = pd.read_json('chat_history.json', orient='records')
|
62 |
+
else:
|
63 |
+
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
|
64 |
+
return history_df
|
65 |
+
|
66 |
def models(text, model="Mixtral 8x7B", seed=42):
|
67 |
global history_df
|
68 |
|
|
|
75 |
max_new_tokens=300,
|
76 |
seed=seed
|
77 |
)
|
78 |
+
formatted_prompt = system_instructions1 + text + "[DR. NOVA QUANTUM]"
|
79 |
stream = client.text_generation(
|
80 |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
81 |
output = ""
|
|
|
90 |
'Response': [output]
|
91 |
})
|
92 |
history_df = pd.concat([history_df, new_row], ignore_index=True)
|
93 |
+
save_history()
|
94 |
|
95 |
return output
|
96 |
|
|
|
104 |
return tmp_path
|
105 |
|
106 |
def display_history():
|
107 |
+
return load_history()
|
108 |
|
109 |
def download_history():
|
110 |
csv_buffer = io.StringIO()
|
|
|
114 |
href = f'data:text/csv;base64,{b64}'
|
115 |
return gr.HTML(f'<a href="{href}" download="chat_history.csv">Download Chat History</a>')
|
116 |
|
117 |
+
DESCRIPTION = """ # <center><b>Dr. Nova Quantum⚡</b></center>
|
118 |
+
### <center>Your Personal Guide to the Frontiers of Science and Technology</center>
|
119 |
+
### <center>Engage in Voice Chat with a Visionary Scientist</center>
|
120 |
"""
|
121 |
|
122 |
with gr.Blocks(css="style.css") as demo:
|
|
|
141 |
)
|
142 |
|
143 |
input_audio = gr.Audio(label="User", sources="microphone", type="filepath")
|
144 |
+
output_audio = gr.Audio(label="Dr. Nova Quantum", type="filepath", autoplay=True)
|
145 |
|
146 |
# Add a DataFrame to display the history
|
147 |
+
history_display = gr.DataFrame(label="Conversation History")
|
148 |
|
149 |
# Add a download button for the history
|
150 |
+
download_button = gr.Button("Download Conversation History")
|
151 |
download_link = gr.HTML()
|
152 |
|
153 |
def process_audio(audio, model, seed):
|
154 |
response = asyncio.run(respond(audio, model, seed))
|
155 |
+
return response, gr.Audio.update(interactive=True), display_history()
|
156 |
|
157 |
input_audio.change(
|
158 |
fn=process_audio,
|
159 |
inputs=[input_audio, select, seed],
|
160 |
+
outputs=[output_audio, input_audio, history_display]
|
161 |
)
|
162 |
|
|
|
|
|
|
|
163 |
# Connect the download button to the download function
|
164 |
download_button.click(fn=download_history, outputs=[download_link])
|
165 |
|
166 |
+
# Load history when the page is refreshed
|
167 |
+
demo.load(fn=display_history, outputs=[history_display])
|
168 |
+
|
169 |
if __name__ == "__main__":
|
170 |
+
demo.queue(max_size=200).launch()
|