File size: 17,179 Bytes
9b3719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4536ad8
 
 
 
 
 
 
 
 
 
9b3719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ecbc99
9b3719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4536ad8
9b3719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6c9dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b3719c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests
import time

from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%I%M")  
    safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def transcribe_audio(openai_key, file_path, model):
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        
        response2 = chat_with_model(response.json().get('text'), '') # *************************************
        st.write('Responses:')
        #st.write(response)
        st.write(response2)
        return response.json().get('text')
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

def create_file(filename, prompt, response):
    if filename.endswith(".txt"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}\n{response}")
    elif filename.endswith(".htm"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}   {response}")
    elif filename.endswith(".md"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}\n\n{response}")
            
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "audio/wav":
        #0628
        if file is not None:
            transcription = transcribe_audio(openai.api_key, file, "whisper-1")
            st.write(transcription)
            gptOutput = chat_with_model(transcription, '', model_choice) # *************************************
            filename = generate_filename(transcription, choice)
            create_file(filename, transcription, gptOutput)
            st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
        return transcription
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})

    # iterate through the stream of events
    start_time = time.time()

    
    report = []
    res_box = st.empty()

    collected_chunks = []
    collected_messages = []

    for chunk in openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages=conversation,
        temperature=0.5,
        stream=True  
    ):
        
        collected_chunks.append(chunk)  # save the event response
        chunk_message = chunk['choices'][0]['delta']  # extract the message
        collected_messages.append(chunk_message)  # save the message
        
        content=chunk["choices"][0].get("delta",{}).get("content")
        
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                #result = result.replace("\n", "")        
                res_box.markdown(f'*{result}*') 
        except:
            st.write('.')
        
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    #st.write(f"Full conversation received: {full_reply_content}")
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']
        
    
def main():
    # Sidebar and global
    openai.api_key = os.getenv('OPENAI_KEY')
    #st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide")
    menu = ["htm", "txt", "xlsx", "csv", "md", "py"]  #619
    choice = st.sidebar.selectbox("Output File Type:", menu)
    model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
    
    # Audio, transcribe, GPT:
    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
        st.write(transcription)
        gptOutput = chat_with_model(transcription, '', model_choice) # *************************************
        filename = generate_filename(transcription, choice)
        create_file(filename, transcription, gptOutput)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)


    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)

    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        #max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4.  8x=96000 for gpt4-32k.
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "xlsx","csv","html", "htm", "md", "txt", "wav"])
    
    document_sections = deque()
    document_responses = {}

    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))

    if len(document_sections) > 0:
        
        if st.button("πŸ‘οΈ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section, model_choice) # *************************************
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    if st.button('πŸ’¬ Chat'):
        st.write('Reasoning with your inputs...')
        response = chat_with_model(user_prompt, ''.join(list(document_sections,)), model_choice) # *************************************
        st.write('Response:')
        st.write(response)
        
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order

    # sidebar of files
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("🌐", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("πŸ”", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('Reasoning with your inputs...')
            #response = chat_with_file_contents(user_prompt, file_contents)
            response = chat_with_model(user_prompt, file_contents, model_choice)
            st.write('Response:')
            st.write(response)
            filename = generate_filename(file_content_area, choice)
            create_file(filename, file_content_area, response)
            st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)





from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationEntityMemory
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
from langchain.llms import OpenAI

if "generated" not in st.session_state:
    st.session_state["generated"] = []
    
if "past" not in st.session_state:
    st.session_state["past"] = []
    
if "input" not in st.session_state:
    st.session_state["input"] = ""
    
if "stored_session" not in st.session_state:
    st.session_state["stored_session"] = []
    

# Define function to get user input
def get_text():
    """
    Get the user input text.

    Returns:
        (str): The text entered by the user
    """
    input_text = st.text_input("You: ", st.session_state["input"], key="input",
                            placeholder="Your AI assistant here! Ask me anything ...", 
                            label_visibility='hidden')
    return input_text

# Define function to start a new chat
def new_chat():
    """
    Clears session state and starts a new chat.
    """
    save = []
    for i in range(len(st.session_state['generated'])-1, -1, -1):
        save.append("User:" + st.session_state["past"][i])
        save.append("Bot:" + st.session_state["generated"][i])        
    st.session_state["stored_session"].append(save)
    st.session_state["generated"] = []
    st.session_state["past"] = []
    st.session_state["input"] = ""
    st.session_state.entity_memory.entity_store = {}
    st.session_state.entity_memory.buffer.clear()

# Set up sidebar with various options
with st.sidebar.expander("πŸ› οΈ ", expanded=False):
    # Option to preview memory store
    if st.checkbox("Preview memory store"):
        with st.expander("Memory-Store", expanded=False):
            st.session_state.entity_memory.store
    # Option to preview memory buffer
    if st.checkbox("Preview memory buffer"):
        with st.expander("Bufffer-Store", expanded=False):
            st.session_state.entity_memory.buffer
    MODEL = st.selectbox(label='Model', options=['gpt-3.5-turbo','text-davinci-003','text-davinci-002','code-davinci-002'])
    K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000)

# Set up the Streamlit app layout
#st.title("πŸ€– Chat Bot with 🧠")
#st.subheader(" Powered by 🦜 LangChain + OpenAI + Streamlit")

# Ask the user to enter their OpenAI API key
#API_O = st.sidebar.text_input("API-KEY", type="password")
API_O = os.getenv('OPENAI_KEY')

# Session state storage would be ideal
if API_O:
    # Create an OpenAI instance
    llm = OpenAI(temperature=0,
                openai_api_key=API_O, 
                model_name=MODEL, 
                verbose=False) 

    # Create a ConversationEntityMemory object if not already created
    if 'entity_memory' not in st.session_state:
            st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K )
        
        # Create the ConversationChain object with the specified configuration
    Conversation = ConversationChain(
            llm=llm, 
            prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE,
            memory=st.session_state.entity_memory
        )  


# Add a button to start a new chat
st.sidebar.button("Embedding Memory Chat", on_click = new_chat, type='primary')

# Get the user input
user_input = get_text()

# Generate the output using the ConversationChain object and the user input, and add the input/output to the session
if user_input:
    output = Conversation.run(input=user_input)  
    st.session_state.past.append(user_input)  
    st.session_state.generated.append(output)  

# Allow to download as well
download_str = []
# Display the conversation history using an expander, and allow the user to download it
with st.expander("Conversation", expanded=True):
    for i in range(len(st.session_state['generated'])-1, -1, -1):
        st.info(st.session_state["past"][i],icon="🧐")
        st.success(st.session_state["generated"][i], icon="πŸ€–")
        download_str.append(st.session_state["past"][i])
        download_str.append(st.session_state["generated"][i])
    
    # Can throw error - requires fix
    download_str = '\n'.join(download_str)
    if download_str:
        st.download_button('Download',download_str)

# Display stored conversation sessions in the sidebar
for i, sublist in enumerate(st.session_state.stored_session):
        with st.sidebar.expander(label= f"Conversation-Session:{i}"):
            st.write(sublist)

# Allow the user to clear all stored conversation sessions
if st.session_state.stored_session:   
    if st.sidebar.checkbox("Clear-all"):
        del st.session_state.stored_session



if __name__ == "__main__":
    main()