import streamlit as st import openai import os import base64 import glob import json import mistune import pytz import math import requests import time from datetime import datetime from openai import ChatCompletion from xml.etree import ElementTree as ET from bs4 import BeautifulSoup from collections import deque from audio_recorder_streamlit import audio_recorder def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%I%M") safe_prompt = "".join(x for x in prompt if x.isalnum())[:45] return f"{safe_date_time}_{safe_prompt}.{file_type}" def transcribe_audio(openai_key, file_path, model): OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" headers = { "Authorization": f"Bearer {openai_key}", } with open(file_path, 'rb') as f: data = {'file': f} response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) if response.status_code == 200: st.write(response.json()) response2 = chat_with_model(response.json().get('text'), '') # ************************************* st.write('Responses:') #st.write(response) st.write(response2) return response.json().get('text') else: st.write(response.json()) st.error("Error in API call.") return None def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder() if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename return None def create_file(filename, prompt, response): if filename.endswith(".txt"): with open(filename, 'w') as file: file.write(f"{prompt}\n{response}") elif filename.endswith(".htm"): with open(filename, 'w') as file: file.write(f"{prompt} {response}") elif filename.endswith(".md"): with open(filename, 'w') as file: file.write(f"{prompt}\n\n{response}") def truncate_document(document, length): return document[:length] def divide_document(document, max_length): return [document[i:i+max_length] for i in range(0, len(document), max_length)] def get_table_download_link(file_path): with open(file_path, 'r') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] # get the file extension if ext == '.txt': mime_type = 'text/plain' elif ext == '.py': mime_type = 'text/plain' elif ext == '.xlsx': mime_type = 'text/plain' elif ext == '.csv': mime_type = 'text/plain' elif ext == '.htm': mime_type = 'text/html' elif ext == '.md': mime_type = 'text/markdown' else: mime_type = 'application/octet-stream' # general binary data type href = f'{file_name}' return href def CompressXML(xml_text): root = ET.fromstring(xml_text) for elem in list(root.iter()): if isinstance(elem.tag, str) and 'Comment' in elem.tag: elem.parent.remove(elem) return ET.tostring(root, encoding='unicode', method="xml") def read_file_content(file,max_length): if file.type == "application/json": content = json.load(file) return str(content) elif file.type == "text/html" or file.type == "text/htm": content = BeautifulSoup(file, "html.parser") return content.text elif file.type == "application/xml" or file.type == "text/xml": tree = ET.parse(file) root = tree.getroot() xml = CompressXML(ET.tostring(root, encoding='unicode')) return xml elif file.type == "text/markdown" or file.type == "text/md": md = mistune.create_markdown() content = md(file.read().decode()) return content elif file.type == "audio/wav": #0628 if file is not None: transcription = transcribe_audio(openai.api_key, file, "whisper-1") st.write(transcription) gptOutput = chat_with_model(transcription, '', model_choice) # ************************************* filename = generate_filename(transcription, choice) create_file(filename, transcription, gptOutput) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) return transcription elif file.type == "text/plain": return file.getvalue().decode() else: return "" def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'): model = model_choice conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) if len(document_section)>0: conversation.append({'role': 'assistant', 'content': document_section}) # iterate through the stream of events start_time = time.time() report = [] res_box = st.empty() collected_chunks = [] collected_messages = [] for chunk in openai.ChatCompletion.create( model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True ): collected_chunks.append(chunk) # save the event response chunk_message = chunk['choices'][0]['delta'] # extract the message collected_messages.append(chunk_message) # save the message content=chunk["choices"][0].get("delta",{}).get("content") try: report.append(content) if len(content) > 0: result = "".join(report).strip() #result = result.replace("\n", "") res_box.markdown(f'*{result}*') except: st.write('.') full_reply_content = ''.join([m.get('content', '') for m in collected_messages]) #st.write(f"Full conversation received: {full_reply_content}") st.write("Elapsed time:") st.write(time.time() - start_time) return full_reply_content def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) if len(file_content)>0: conversation.append({'role': 'assistant', 'content': file_content}) response = openai.ChatCompletion.create(model=model_choice, messages=conversation) return response['choices'][0]['message']['content'] def main(): # Sidebar and global openai.api_key = os.getenv('OPENAI_KEY') #st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") menu = ["htm", "txt", "xlsx", "csv", "md", "py"] #619 choice = st.sidebar.selectbox("Output File Type:", menu) model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) # Audio, transcribe, GPT: filename = save_and_play_audio(audio_recorder) if filename is not None: transcription = transcribe_audio(openai.api_key, filename, "whisper-1") st.write(transcription) gptOutput = chat_with_model(transcription, '', model_choice) # ************************************* filename = generate_filename(transcription, choice) create_file(filename, transcription, gptOutput) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) collength, colupload = st.columns([2,3]) # adjust the ratio as needed with collength: #max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4. 8x=96000 for gpt4-32k. max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) with colupload: uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "xlsx","csv","html", "htm", "md", "txt", "wav"]) document_sections = deque() document_responses = {} if uploaded_file is not None: file_content = read_file_content(uploaded_file, max_length) document_sections.extend(divide_document(file_content, max_length)) if len(document_sections) > 0: if st.button("👁️ View Upload"): st.markdown("**Sections of the uploaded file:**") for i, section in enumerate(list(document_sections)): st.markdown(f"**Section {i+1}**\n{section}") st.markdown("**Chat with the model:**") for i, section in enumerate(list(document_sections)): if i in document_responses: st.markdown(f"**Section {i+1}**\n{document_responses[i]}") else: if st.button(f"Chat about Section {i+1}"): st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, section, model_choice) # ************************************* st.write('Response:') st.write(response) document_responses[i] = response filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) create_file(filename, user_prompt, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) if st.button('💬 Chat'): st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, ''.join(list(document_sections,)), model_choice) # ************************************* st.write('Response:') st.write(response) filename = generate_filename(user_prompt, choice) create_file(filename, user_prompt, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) all_files = glob.glob("*.*") all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order # sidebar of files file_contents='' next_action='' for file in all_files: col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed with col1: if st.button("🌐", key="md_"+file): # md emoji button with open(file, 'r') as f: file_contents = f.read() next_action='md' with col2: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("📂", key="open_"+file): # open emoji button with open(file, 'r') as f: file_contents = f.read() next_action='open' with col4: if st.button("🔍", key="read_"+file): # search emoji button with open(file, 'r') as f: file_contents = f.read() next_action='search' with col5: if st.button("🗑", key="delete_"+file): os.remove(file) st.experimental_rerun() if len(file_contents) > 0: if next_action=='open': file_content_area = st.text_area("File Contents:", file_contents, height=500) if next_action=='md': st.markdown(file_contents) if next_action=='search': file_content_area = st.text_area("File Contents:", file_contents, height=500) st.write('Reasoning with your inputs...') #response = chat_with_file_contents(user_prompt, file_contents) response = chat_with_model(user_prompt, file_contents, model_choice) st.write('Response:') st.write(response) filename = generate_filename(file_content_area, choice) create_file(filename, file_content_area, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) from langchain.chains import ConversationChain from langchain.chains.conversation.memory import ConversationEntityMemory from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from langchain.llms import OpenAI if "generated" not in st.session_state: st.session_state["generated"] = [] if "past" not in st.session_state: st.session_state["past"] = [] if "input" not in st.session_state: st.session_state["input"] = "" if "stored_session" not in st.session_state: st.session_state["stored_session"] = [] # Define function to get user input def get_text(): """ Get the user input text. Returns: (str): The text entered by the user """ input_text = st.text_input("You: ", st.session_state["input"], key="input", placeholder="Your AI assistant here! Ask me anything ...", label_visibility='hidden') return input_text # Define function to start a new chat def new_chat(): """ Clears session state and starts a new chat. """ save = [] for i in range(len(st.session_state['generated'])-1, -1, -1): save.append("User:" + st.session_state["past"][i]) save.append("Bot:" + st.session_state["generated"][i]) st.session_state["stored_session"].append(save) st.session_state["generated"] = [] st.session_state["past"] = [] st.session_state["input"] = "" st.session_state.entity_memory.entity_store = {} st.session_state.entity_memory.buffer.clear() # Set up sidebar with various options with st.sidebar.expander("🛠️ ", expanded=False): # Option to preview memory store if st.checkbox("Preview memory store"): with st.expander("Memory-Store", expanded=False): st.session_state.entity_memory.store # Option to preview memory buffer if st.checkbox("Preview memory buffer"): with st.expander("Bufffer-Store", expanded=False): st.session_state.entity_memory.buffer MODEL = st.selectbox(label='Model', options=['gpt-3.5-turbo','text-davinci-003','text-davinci-002','code-davinci-002']) K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000) # Set up the Streamlit app layout #st.title("🤖 Chat Bot with 🧠") #st.subheader(" Powered by 🦜 LangChain + OpenAI + Streamlit") # Ask the user to enter their OpenAI API key #API_O = st.sidebar.text_input("API-KEY", type="password") API_O = os.getenv('OPENAI_KEY') # Session state storage would be ideal if API_O: # Create an OpenAI instance llm = OpenAI(temperature=0, openai_api_key=API_O, model_name=MODEL, verbose=False) # Create a ConversationEntityMemory object if not already created if 'entity_memory' not in st.session_state: st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K ) # Create the ConversationChain object with the specified configuration Conversation = ConversationChain( llm=llm, prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE, memory=st.session_state.entity_memory ) # Add a button to start a new chat st.sidebar.button("Embedding Memory Chat", on_click = new_chat, type='primary') # Get the user input user_input = get_text() # Generate the output using the ConversationChain object and the user input, and add the input/output to the session if user_input: output = Conversation.run(input=user_input) st.session_state.past.append(user_input) st.session_state.generated.append(output) # Allow to download as well download_str = [] # Display the conversation history using an expander, and allow the user to download it with st.expander("Conversation", expanded=True): for i in range(len(st.session_state['generated'])-1, -1, -1): st.info(st.session_state["past"][i],icon="🧐") st.success(st.session_state["generated"][i], icon="🤖") download_str.append(st.session_state["past"][i]) download_str.append(st.session_state["generated"][i]) # Can throw error - requires fix download_str = '\n'.join(download_str) if download_str: st.download_button('Download',download_str) # Display stored conversation sessions in the sidebar for i, sublist in enumerate(st.session_state.stored_session): with st.sidebar.expander(label= f"Conversation-Session:{i}"): st.write(sublist) # Allow the user to clear all stored conversation sessions if st.session_state.stored_session: if st.sidebar.checkbox("Clear-all"): del st.session_state.stored_session if __name__ == "__main__": main()