Spaces:
Runtime error
Runtime error
File size: 6,897 Bytes
558b853 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import numpy as np
import torch
import nltk
import os
import uuid
from __future__ import annotations
os.environ["COQUI_TOS_AGREED"] = "1"
nltk.download('punkt')
from TTS.api import TTS
from huggingface_hub import HfApi
HF_TOKEN = os.environ.get("HF_TOKEN")
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True)
title = "Voice Chat Mistral"
DESCRIPTION = title
css = """.toast-wrap { display: none !important } """
api = HfApi(token=HF_TOKEN)
repo_id = "ylacombe/voice-chat-with-lama"
system_message = "\nYou are a helpful assistant."
temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2
import gradio as gr
import os
import time
import gradio as gr
from transformers import pipeline
import numpy as np
from gradio_client import Client
from huggingface_hub import InferenceClient
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
text_client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = text_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
def transcribe(wav_path):
return whisper_client.predict(
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
"transcribe", # str in 'Task' Radio component
api_name="/predict"
)
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
def add_text(history, text):
history = [] if history is None else history
history = history + [(text, None)]
return history, gr.update(value="", interactive=False)
def add_file(history, file):
history = [] if history is None else history
text = transcribe(
file
)
history = history + [(text, None)]
return history
def bot(history, system_prompt=""):
history = [] if history is None else history
if system_prompt == "":
system_prompt = system_message
history[-1][1] = ""
for character in generate(history[-1][0], history[:-1]):
history[-1][1] = character
yield history
def generate_speech(history):
text_to_generate = history[-1][1]
text_to_generate = text_to_generate.replace("\n", " ").strip()
text_to_generate = nltk.sent_tokenize(text_to_generate)
filename = f"{uuid.uuid4()}.wav"
sampling_rate = tts.synthesizer.tts_config.audio["sample_rate"]
silence = [0] * int(0.25 * sampling_rate)
for sentence in text_to_generate:
try:
# generate speech by cloning a voice using default settings
wav = tts.tts(text=sentence,
speaker_wav="examples/female.wav",
decoder_iterations=25,
decoder_sampler="dpm++2m",
speed=1.2,
language="en")
yield (sampling_rate, np.array(wav)) #np.array(wav + silence))
except RuntimeError as e :
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need tor estart
print(f"Exit due to: Unrecoverable exception caused by prompt:{sentence}", flush=True)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
# HF Space specific.. This error is unrecoverable need to restart space
api.restart_space(repo_id=repo_id)
else:
print("RuntimeError: non device-side assert error:", str(e))
raise e
with gr.Blocks(title=title) as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('examples/lama.jpeg', 'examples/lama2.jpeg'),
bubble_full_width=False,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter, or speak to your microphone",
container=False,
)
txt_btn = gr.Button(value="Submit text",scale=1)
btn = gr.Audio(source="microphone", type="filepath", scale=4)
with gr.Row():
audio = gr.Audio(type="numpy", streaming=True, autoplay=True, label="Generated audio response", show_label=True)
clear_btn = gr.ClearButton([chatbot, audio])
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, chatbot, chatbot
).then(generate_speech, chatbot, audio)
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, chatbot, chatbot
).then(generate_speech, chatbot, audio)
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
file_msg = btn.stop_recording(add_file, [chatbot, btn], [chatbot], queue=False).then(
bot, chatbot, chatbot
).then(generate_speech, chatbot, audio)
gr.Markdown("""
This Space demonstrates how to speak to a chatbot, based solely on open-source models.
It relies on 3 models:
1. [Whisper-large-v2](https://huggingface.co/spaces/sanchit-gandhi/whisper-large-v2) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
2. [Mistral-7b-instruct](https://huggingface.co/spaces/osanseviero/mistral-super-fast) as the chat model, the actual chat model. It is called from [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/inference).
3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.
Note:
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml""")
demo.queue()
demo.launch(debug=True) |