import streamlit as st import openai import os import base64 import glob import json import mistune import pytz import math import requests import pandas as pd from datetime import datetime from openai import ChatCompletion from xml.etree import ElementTree as ET from bs4 import BeautifulSoup from collections import deque from audio_recorder_streamlit import audio_recorder openai.api_key = os.getenv('OPENAI_KEY') st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") menu = ["txt", "htm", "md", "py", "csv", "xlsx"] choice = st.sidebar.selectbox("Output File Type:", menu) model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%I%M") safe_prompt = "".join(x for x in prompt if x.isalnum())[:45] return f"{safe_date_time}_{safe_prompt}.{file_type}" TEMPERATURE = st.sidebar.slider("Adjust Creativity:", min_value=0.1, max_value=1.0, value=0.5, step=0.1) def chat_with_model(prompt, document_section): model = model_choice conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) conversation.append({'role': 'assistant', 'content': document_section}) response = openai.ChatCompletion.create(model=model, messages=conversation, temperature=TEMPERATURE) return response['choices'][0]['message']['content'] def create_file(filename, prompt, response): if filename.endswith(".txt"): with open(filename, 'w') as file: file.write(f"Prompt:\n{prompt}\nResponse:\n{response}") elif filename.endswith(".htm"): with open(filename, 'w') as file: file.write(f"

Prompt:

{prompt}

Response:

{response}

") elif filename.endswith(".md"): with open(filename, 'w') as file: file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}") elif filename.endswith(".csv"): response_df = pd.DataFrame({"Prompt": [prompt], "Response": [response]}) response_df.to_csv(filename, index=False) elif filename.endswith(".xlsx"): response_df = pd.DataFrame({"Prompt": [prompt], "Response": [response]}) response_df.to_excel(filename, index=False) # Updated to auto process transcript to chatgpt in AI pipeline from Whisper to ChatGPT def transcribe_audio(openai_key, file_path, model): OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" headers = { "Authorization": f"Bearer {openai_key}", } with open(file_path, 'rb') as f: data = {'file': f} response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) if response.status_code == 200: st.write('Reasoning with your transcription..') transcript=response.json().get('text') st.write(transcript) gptResponse = chat_with_model(transcript, '') # send transcript to ChatGPT filename = generate_filename(transcript, choice) # auto name file with date and prompt per output file type create_file(filename, transcript, gptResponse) # write output file return gptResponse else: st.write(response.json()) st.error("Error in API call.") return None # Updated to call direct from transcription to chat inference. def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder() if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename USEAUDIO=False if USEAUDIO: if st.sidebar.checkbox('Use Audio Input'): filename = save_and_play_audio(audio_recorder) if filename is not None: #if st.button("Transcribe"): transcription = transcribe_audio(openai.api_key, filename, "whisper-1") st.markdown('### Transcription:') st.write(transcription) def truncate_document(document, length): return document[:length] def divide_document(document, max_length): return [document[i:i+max_length] for i in range(0, len(document), max_length)] def get_table_download_link(file_path): with open(file_path, 'r') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] # get the file extension if ext == '.txt': mime_type = 'text/plain' elif ext == '.wav': mime_type = 'audio/x-wav' elif ext == '.htm': mime_type = 'text/html' elif ext == '.md': mime_type = 'text/markdown' else: mime_type = 'application/octet-stream' # general binary data type href = f'{file_name}' return href def CompressXML(xml_text): root = ET.fromstring(xml_text) for elem in list(root.iter()): if isinstance(elem.tag, str) and 'Comment' in elem.tag: elem.parent.remove(elem) return ET.tostring(root, encoding='unicode', method="xml") def read_file_content(file,max_length): if file.type == "application/json": content = json.load(file) return str(content) elif file.type == "text/html" or file.type == "text/htm": content = BeautifulSoup(file, "html.parser") return content.text elif file.type == "application/xml" or file.type == "text/xml": tree = ET.parse(file) root = tree.getroot() xml = CompressXML(ET.tostring(root, encoding='unicode')) return xml elif file.type == "text/markdown" or file.type == "text/md": md = mistune.create_markdown() content = md(file.read().decode()) return content elif file.type == "text/plain": return file.getvalue().decode() elif file.type == "text/csv": df = pd.read_csv(file) return df.to_string(index=False) elif file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": df = pd.read_excel(file) return df.to_string(index=False) else: return "" def main(): # max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4. 8x=96000 for gpt4-32k. max_length = st.sidebar.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) colprompt, colupload = st.columns([5,2]) # adjust the ratio as needed with colprompt: user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=150) with colupload: uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "txt"]) document_sections = deque() document_responses = {} if uploaded_file is not None: file_content = read_file_content(uploaded_file, max_length) document_sections.extend(divide_document(file_content, max_length)) if len(document_sections) > 0: if st.button("👁️ View Upload"): st.markdown("**Sections of the uploaded file:**") for i, section in enumerate(list(document_sections)): st.markdown(f"**Section {i+1}**\n{section}") st.markdown("**Chat with the model:**") for i, section in enumerate(list(document_sections)): if i in document_responses: st.markdown(f"**Section {i+1}**\n{document_responses[i]}") else: if st.button(f"Chat about Section {i+1}"): st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, section) st.write('Response:') st.write(response) document_responses[i] = response filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) create_file(filename, user_prompt, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) if st.button('💬 Chat'): st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, ''.join(list(document_sections))) st.write('Response:') st.write(response) filename = generate_filename(user_prompt, choice) create_file(filename, user_prompt, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) all_files = glob.glob("*.*") all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order for file in all_files: col1, col3 = st.sidebar.columns([5,1]) # adjust the ratio as needed with col1: try: st.markdown(get_table_download_link(file), unsafe_allow_html=True) except Exception as e: st.error(f"Error occurred while processing file {file}: {str(e)}") with col3: if st.button("🗑", key="delete_"+file): os.remove(file) st.experimental_rerun() if __name__ == "__main__": main()