import requests import pytz import streamlit as st import os from datetime import datetime from audio_recorder_streamlit import audio_recorder # Filepath for saving the text file_path = 'text_output.txt' API_URL = 'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud' headers = { "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "Content-Type": "audio/wav" } def query(filename): with open(filename, "rb") as f: data = f.read #try: response = requests.post(API_URL, headers=headers, data=data) #except: # st.write('Whisper Voice Speech to Text Model is asleep. Starting up now on T4 - please give 3 minutes then retry as KEDA scales up from zero to activate running container(s).') return response.json() def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%H%M") replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] return f"{safe_date_time}_{safe_prompt}.{file_type}" def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder() if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename def transcribe_audio(filename): output = query(filename) return output def save_transcription(transcription): with open(file_path, 'a') as f: f.write(f"{transcription}\n") def load_previous_transcriptions(): if os.path.exists(file_path): with open(file_path, 'r') as f: return f.read() return "" def main(): st.title("Speech to Text 🎤📝") st.write("Record your speech and get the text. 🗨️") previous_transcriptions = load_previous_transcriptions() text_area = st.text_area("Transcriptions:", previous_transcriptions, height=400) filename = save_and_play_audio(audio_recorder) if filename is not None: try: transcription = transcribe_audio(filename) # Update the text area with new transcription updated_transcriptions = f"{previous_transcriptions}\n{transcription}" st.text_area("Transcriptions:", updated_transcriptions, height=400) # Save the new transcription to file save_transcription(transcription) except: st.write('Whisperer loading..') if __name__ == "__main__": main()