Spaces:
Build error
Build error
File size: 6,766 Bytes
f7fe1c1 15314a9 f7fe1c1 755cfeb f7fe1c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import cv2
import gradio as gr
import mediapipe as mp
#import dlib
import imutils
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_face_mesh = mp.solutions.face_mesh
mp_face_detection = mp.solutions.face_detection
def apply_media_pipe_face_detection(image):
with mp_face_detection.FaceDetection(
model_selection=1, min_detection_confidence=0.5) as face_detection:
results = face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.detections:
return image
annotated_image = image.copy()
for detection in results.detections:
mp_drawing.draw_detection(annotated_image, detection)
return annotated_image
def apply_media_pipe_facemesh(image):
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5) as face_mesh:
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return image
annotated_image = image.copy()
for face_landmarks in results.multi_face_landmarks:
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_tesselation_style())
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_contours_style())
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_IRISES,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_iris_connections_style())
return annotated_image
class FaceProcessing(object):
def __init__(self, ui_obj):
self.name = "Face Image Processing"
self.description = "Call for Face Image and video Processing"
self.ui_obj = ui_obj
def take_webcam_photo(self, image):
return image
def take_webcam_video(self, images):
return images
def mp_webcam_photo(self, image):
return image
def mp_webcam_face_mesh(self, image):
mesh_image = apply_media_pipe_facemesh(image)
return mesh_image
def mp_webcam_face_detection(self, image):
face_detection_img = apply_media_pipe_face_detection(image)
return face_detection_img
def webcam_stream_update(self, video_frame):
video_out = face_orientation_obj.create_orientation(video_frame)
return video_out
def create_ui(self):
with self.ui_obj:
gr.Markdown("Face Analysis with Webcam/Video")
with gr.Tabs():
with gr.TabItem("Playing with Webcam"):
with gr.Row():
webcam_image_in = gr.Image(label="Webcam Image Input", source="webcam")
webcam_video_in = gr.Video(label="Webcam Video Input", source="webcam")
with gr.Row():
webcam_photo_action = gr.Button("Take the Photo")
webcam_video_action = gr.Button("Take the Video")
with gr.Row():
webcam_photo_out = gr.Image(label="Webcam Photo Output")
webcam_video_out = gr.Video(label="Webcam Video")
with gr.TabItem("Mediapipe Facemesh with Webcam"):
with gr.Row():
with gr.Column():
mp_image_in = gr.Image(label="Webcam Image Input", source="webcam")
with gr.Column():
mp_photo_action = gr.Button("Take the Photo")
mp_apply_fm_action = gr.Button("Apply Face Mesh the Photo")
mp_apply_landmarks_action = gr.Button("Apply Face Landmarks the Photo")
with gr.Row():
mp_photo_out = gr.Image(label="Webcam Photo Output")
mp_fm_photo_out = gr.Image(label="Face Mesh Photo Output")
mp_lm_photo_out = gr.Image(label="Face Landmarks Photo Output")
with gr.TabItem("Face Orientation on Live Webcam Stream"):
with gr.Row():
webcam_stream_in = gr.Image(label="Webcam Stream Input",
source="webcam",
streaming=True)
webcam_stream_out = gr.Image(label="Webcam Stream Output")
webcam_stream_in.change(
self.webcam_stream_update,
inputs=webcam_stream_in,
outputs=webcam_stream_out
)
mp_photo_action.click(
self.mp_webcam_photo,
[
mp_image_in
],
[
mp_photo_out
]
)
mp_apply_fm_action.click(
self.mp_webcam_face_mesh,
[
mp_image_in
],
[
mp_fm_photo_out
]
)
mp_apply_landmarks_action.click(
self.mp_webcam_face_detection,
[
mp_image_in
],
[
mp_lm_photo_out
]
)
webcam_photo_action.click(
self.take_webcam_photo,
[
webcam_image_in
],
[
webcam_photo_out
]
)
webcam_video_action.click(
self.take_webcam_video,
[
webcam_video_in
],
[
webcam_video_out
]
)
def launch_ui(self):
self.ui_obj.launch()
if __name__ == '__main__':
my_app = gr.Blocks()
face_ui = FaceProcessing(my_app)
face_ui.create_ui()
face_ui.launch_ui() |