Spaces:
Sleeping
Sleeping
Delete backup.02162024.app.py
Browse files- backup.02162024.app.py +0 -1210
backup.02162024.app.py
DELETED
@@ -1,1210 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
import json
|
4 |
-
from PIL import Image
|
5 |
-
from urllib.parse import quote # Ensure this import is included
|
6 |
-
|
7 |
-
# Set page configuration with a title and favicon
|
8 |
-
st.set_page_config(
|
9 |
-
page_title="🌌🚀 Mixable AI - Voice Search",
|
10 |
-
page_icon="🌠",
|
11 |
-
layout="wide",
|
12 |
-
initial_sidebar_state="expanded",
|
13 |
-
menu_items={
|
14 |
-
'Get Help': 'https://huggingface.co/awacke1',
|
15 |
-
'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload",
|
16 |
-
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558"
|
17 |
-
}
|
18 |
-
)
|
19 |
-
|
20 |
-
# Ensure the directory for storing scores exists
|
21 |
-
score_dir = "scores"
|
22 |
-
os.makedirs(score_dir, exist_ok=True)
|
23 |
-
|
24 |
-
# Function to generate a unique key for each button, including an emoji
|
25 |
-
def generate_key(label, header, idx):
|
26 |
-
return f"{header}_{label}_{idx}_key"
|
27 |
-
|
28 |
-
# Function to increment and save score
|
29 |
-
def update_score(key, increment=1):
|
30 |
-
score_file = os.path.join(score_dir, f"{key}.json")
|
31 |
-
if os.path.exists(score_file):
|
32 |
-
with open(score_file, "r") as file:
|
33 |
-
score_data = json.load(file)
|
34 |
-
else:
|
35 |
-
score_data = {"clicks": 0, "score": 0}
|
36 |
-
|
37 |
-
score_data["clicks"] += 1
|
38 |
-
score_data["score"] += increment
|
39 |
-
|
40 |
-
with open(score_file, "w") as file:
|
41 |
-
json.dump(score_data, file)
|
42 |
-
|
43 |
-
return score_data["score"]
|
44 |
-
|
45 |
-
# Function to load score
|
46 |
-
def load_score(key):
|
47 |
-
score_file = os.path.join(score_dir, f"{key}.json")
|
48 |
-
if os.path.exists(score_file):
|
49 |
-
with open(score_file, "r") as file:
|
50 |
-
score_data = json.load(file)
|
51 |
-
return score_data["score"]
|
52 |
-
return 0
|
53 |
-
|
54 |
-
# Transhuman Space glossary with full content
|
55 |
-
transhuman_glossary = {
|
56 |
-
"🚀 Core Technologies": ["Nanotechnology🔬", "Artificial Intelligence🤖", "Quantum Computing💻", "Spacecraft Engineering🛸", "Biotechnology🧬", "Cybernetics🦾", "Virtual Reality🕶️", "Energy Systems⚡", "Material Science🧪", "Communication Technologies📡"],
|
57 |
-
"🌐 Nations": ["Terran Federation🌍", "Martian Syndicate🔴", "Jovian Republics🪐", "Asteroid Belt Communities🌌", "Venusian Colonies🌋", "Lunar States🌖", "Outer System Alliances✨", "Digital Consciousness Collectives🧠", "Transhumanist Enclaves🦿", "Non-Human Intelligence Tribes👽"],
|
58 |
-
"💡 Memes": ["Post-Humanism🚶♂️➡️🚀", "Neo-Evolutionism🧬📈", "Digital Ascendancy💾👑", "Solar System Nationalism🌞🏛", "Space Explorationism🚀🛰", "Cyber Democracy🖥️🗳️", "Interstellar Environmentalism🌍💚", "Quantum Mysticism🔮💫", "Techno-Anarchism🔌🏴", "Cosmic Preservationism🌌🛡️"],
|
59 |
-
"🏛 Institutions": ["Interstellar Council🪖", "Transhuman Ethical Standards Organization📜", "Galactic Trade Union🤝", "Space Habitat Authority🏠", "Artificial Intelligence Safety Commission🤖🔒", "Extraterrestrial Relations Board👽🤝", "Quantum Research Institute🔬", "Biogenetics Oversight Committee🧫", "Cyberspace Regulatory Agency💻", "Planetary Defense Coalition🌍🛡"],
|
60 |
-
"🔗 Organizations": ["Neural Network Pioneers🧠🌐", "Spacecraft Innovators Guild🚀🛠", "Quantum Computing Consortium💻🔗", "Interplanetary Miners Union⛏️🪐", "Cybernetic Augmentation Advocates🦾❤️", "Biotechnological Harmony Group🧬🕊", "Stellar Navigation Circle🧭✨", "Virtual Reality Creators Syndicate🕶️🎨", "Renewable Energy Pioneers⚡🌱", "Transhuman Rights Activists🦿📢"],
|
61 |
-
"⚔️ War": ["Space Warfare Tactics🚀⚔️", "Cyber Warfare🖥️🔒", "Biological Warfare🧬💣", "Nanotech Warfare🔬⚔️", "Psychological Operations🧠🗣️", "Quantum Encryption & Decryption🔐💻", "Kinetic Bombardment🚀💥", "Energy Shield Defense🛡️⚡", "Stealth Spacecraft🚀🔇", "Artificial Intelligence Combat🤖⚔️"],
|
62 |
-
"🎖 Military": ["Interstellar Navy🚀🎖", "Planetary Guard🌍🛡", "Cybernetic Marines🦾🔫", "Nanotech Soldiers🔬💂", "Space Drone Fleet🛸🤖", "Quantum Signal Corps💻📡", "Special Operations Forces👥⚔️", "Artificial Intelligence Strategists🤖🗺️", "Orbital Defense Systems🌌🛡️", "Exoskeleton Brigades🦾🚶♂️"],
|
63 |
-
"🦹 Outlaws": ["Pirate Fleets🏴☠️🚀", "Hacktivist Collectives💻🚫", "Smuggler Caravans🛸💼", "Rebel AI Entities🤖🚩", "Black Market Biotech Dealers🧬💰", "Quantum Thieves💻🕵️♂️", "Space Nomad Raiders🚀🏴☠️", "Cyberspace Intruders💻👾", "Anti-Transhumanist Factions🚫🦾", "Rogue Nanotech Swarms🔬🦠"],
|
64 |
-
"👽 Terrorists": ["Bioengineered Virus Spreaders🧬💉", "Nanotechnology Saboteurs🔬🧨", "Cyber Terrorist Networks💻🔥", "Rogue AI Sects🤖🛑", "Space Anarchist Cells🚀Ⓐ", "Quantum Data Hijackers💻🔓", "Environmental Extremists🌍💣", "Technological Singularity Cults🤖🙏", "Interspecies Supremacists👽👑", "Orbital Bombardment Threats🛰️💥"],
|
65 |
-
}
|
66 |
-
|
67 |
-
|
68 |
-
# Function to search glossary and display results
|
69 |
-
def search_glossary(query):
|
70 |
-
for category, terms in transhuman_glossary.items():
|
71 |
-
if query.lower() in (term.lower() for term in terms):
|
72 |
-
st.markdown(f"### {category}")
|
73 |
-
st.write(f"- {query}")
|
74 |
-
|
75 |
-
st.write('## Processing query against GPT and Llama:')
|
76 |
-
# ------------------------------------------------------------------------------------------------
|
77 |
-
st.write('Reasoning with your inputs using GPT...')
|
78 |
-
response = chat_with_model(query)
|
79 |
-
st.write('Response:')
|
80 |
-
st.write(response)
|
81 |
-
filename = generate_filename(response, "txt")
|
82 |
-
create_file(filename, query, response, should_save)
|
83 |
-
|
84 |
-
st.write('Reasoning with your inputs using Llama...')
|
85 |
-
response = StreamLLMChatResponse(query)
|
86 |
-
filename_txt = generate_filename(query, "md")
|
87 |
-
create_file(filename_txt, query, response, should_save)
|
88 |
-
# ------------------------------------------------------------------------------------------------
|
89 |
-
|
90 |
-
|
91 |
-
# Display the glossary with Streamlit components, ensuring emojis are used
|
92 |
-
def display_glossary(area):
|
93 |
-
st.subheader(f"📘 Glossary for {area}")
|
94 |
-
terms = transhuman_glossary[area]
|
95 |
-
for idx, term in enumerate(terms, start=1):
|
96 |
-
st.write(f"{idx}. {term}")
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
def display_glossary_grid(glossary):
|
101 |
-
# Search URL functions with emoji as keys, now using quote for URL safety
|
102 |
-
search_urls = {
|
103 |
-
"📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
|
104 |
-
"🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
|
105 |
-
"▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
|
106 |
-
"🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}"
|
107 |
-
}
|
108 |
-
|
109 |
-
groupings = [
|
110 |
-
["🚀 Core Technologies", "🌐 Nations", "💡 Memes"],
|
111 |
-
["🏛 Institutions", "🔗 Organizations", "⚔️ War"],
|
112 |
-
["🎖 Military", "🦹 Outlaws", "👽 Terrorists"],
|
113 |
-
]
|
114 |
-
|
115 |
-
for group in groupings:
|
116 |
-
cols = st.columns(3) # Create columns for a 3x3 grid
|
117 |
-
for idx, category in enumerate(group):
|
118 |
-
with cols[idx]:
|
119 |
-
st.write(f"### {category}")
|
120 |
-
if category in glossary:
|
121 |
-
terms = glossary[category]
|
122 |
-
for term in terms:
|
123 |
-
# Generate and display links for each term, now safely encoding URLs
|
124 |
-
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
|
125 |
-
st.markdown(f"{term} {links_md}", unsafe_allow_html=True)
|
126 |
-
|
127 |
-
|
128 |
-
# Streamlined UI for displaying buttons with scores, integrating emojis
|
129 |
-
def display_buttons_with_scores():
|
130 |
-
for header, terms in transhuman_glossary.items():
|
131 |
-
st.markdown(f"## {header}")
|
132 |
-
for term in terms:
|
133 |
-
key = generate_key(term, header, terms.index(term))
|
134 |
-
score = load_score(key)
|
135 |
-
if st.button(f"{term} {score}🚀", key=key):
|
136 |
-
update_score(key)
|
137 |
-
search_glossary('Create a three level markdown outline with 3 subpoints each where each line defines and writes out the core technology descriptions with appropriate emojis for the glossary term: ' + term)
|
138 |
-
st.experimental_rerun()
|
139 |
-
|
140 |
-
def fetch_wikipedia_summary(keyword):
|
141 |
-
# Placeholder function for fetching Wikipedia summaries
|
142 |
-
# In a real app, you might use requests to fetch from the Wikipedia API
|
143 |
-
return f"Summary for {keyword}. For more information, visit Wikipedia."
|
144 |
-
|
145 |
-
def create_search_url_youtube(keyword):
|
146 |
-
base_url = "https://www.youtube.com/results?search_query="
|
147 |
-
return base_url + keyword.replace(' ', '+')
|
148 |
-
|
149 |
-
def create_search_url_bing(keyword):
|
150 |
-
base_url = "https://www.bing.com/search?q="
|
151 |
-
return base_url + keyword.replace(' ', '+')
|
152 |
-
|
153 |
-
def create_search_url_wikipedia(keyword):
|
154 |
-
base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search="
|
155 |
-
return base_url + keyword.replace(' ', '+')
|
156 |
-
|
157 |
-
def create_search_url_google(keyword):
|
158 |
-
base_url = "https://www.google.com/search?q="
|
159 |
-
return base_url + keyword.replace(' ', '+')
|
160 |
-
|
161 |
-
|
162 |
-
def display_images_and_wikipedia_summaries():
|
163 |
-
st.title('Gallery with Related Stories')
|
164 |
-
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
|
165 |
-
if not image_files:
|
166 |
-
st.write("No PNG images found in the current directory.")
|
167 |
-
return
|
168 |
-
|
169 |
-
for image_file in image_files:
|
170 |
-
image = Image.open(image_file)
|
171 |
-
st.image(image, caption=image_file, use_column_width=True)
|
172 |
-
|
173 |
-
keyword = image_file.split('.')[0] # Assumes keyword is the file name without extension
|
174 |
-
|
175 |
-
# Display Wikipedia and Google search links
|
176 |
-
wikipedia_url = create_search_url_wikipedia(keyword)
|
177 |
-
google_url = create_search_url_google(keyword)
|
178 |
-
youtube_url = create_search_url_youtube(keyword)
|
179 |
-
bing_url = create_search_url_bing(keyword)
|
180 |
-
|
181 |
-
links_md = f"""
|
182 |
-
[Wikipedia]({wikipedia_url}) |
|
183 |
-
[Google]({google_url}) |
|
184 |
-
[YouTube]({youtube_url}) |
|
185 |
-
[Bing]({bing_url})
|
186 |
-
"""
|
187 |
-
st.markdown(links_md)
|
188 |
-
|
189 |
-
|
190 |
-
def get_all_query_params(key):
|
191 |
-
return st.query_params().get(key, [])
|
192 |
-
|
193 |
-
def clear_query_params():
|
194 |
-
st.query_params()
|
195 |
-
|
196 |
-
|
197 |
-
# Function to display content or image based on a query
|
198 |
-
def display_content_or_image(query):
|
199 |
-
# Check if the query matches any glossary term
|
200 |
-
for category, terms in transhuman_glossary.items():
|
201 |
-
for term in terms:
|
202 |
-
if query.lower() in term.lower():
|
203 |
-
st.subheader(f"Found in {category}:")
|
204 |
-
st.write(term)
|
205 |
-
return True # Return after finding and displaying the first match
|
206 |
-
|
207 |
-
# Check for an image match in a predefined directory (adjust path as needed)
|
208 |
-
image_dir = "images" # Example directory where images are stored
|
209 |
-
image_path = f"{image_dir}/{query}.png" # Construct image path with query
|
210 |
-
if os.path.exists(image_path):
|
211 |
-
st.image(image_path, caption=f"Image for {query}")
|
212 |
-
return True
|
213 |
-
|
214 |
-
# If no content or image is found
|
215 |
-
st.warning("No matching content or image found.")
|
216 |
-
return False
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
# Imports
|
225 |
-
import base64
|
226 |
-
import glob
|
227 |
-
import json
|
228 |
-
import math
|
229 |
-
import openai
|
230 |
-
import os
|
231 |
-
import pytz
|
232 |
-
import re
|
233 |
-
import requests
|
234 |
-
import streamlit as st
|
235 |
-
import textract
|
236 |
-
import time
|
237 |
-
import zipfile
|
238 |
-
import huggingface_hub
|
239 |
-
import dotenv
|
240 |
-
from audio_recorder_streamlit import audio_recorder
|
241 |
-
from bs4 import BeautifulSoup
|
242 |
-
from collections import deque
|
243 |
-
from datetime import datetime
|
244 |
-
from dotenv import load_dotenv
|
245 |
-
from huggingface_hub import InferenceClient
|
246 |
-
from io import BytesIO
|
247 |
-
from langchain.chat_models import ChatOpenAI
|
248 |
-
from langchain.chains import ConversationalRetrievalChain
|
249 |
-
from langchain.embeddings import OpenAIEmbeddings
|
250 |
-
from langchain.memory import ConversationBufferMemory
|
251 |
-
from langchain.text_splitter import CharacterTextSplitter
|
252 |
-
from langchain.vectorstores import FAISS
|
253 |
-
from openai import ChatCompletion
|
254 |
-
from PyPDF2 import PdfReader
|
255 |
-
from templates import bot_template, css, user_template
|
256 |
-
from xml.etree import ElementTree as ET
|
257 |
-
import streamlit.components.v1 as components # Import Streamlit Components for HTML5
|
258 |
-
|
259 |
-
|
260 |
-
def add_Med_Licensing_Exam_Dataset():
|
261 |
-
import streamlit as st
|
262 |
-
from datasets import load_dataset
|
263 |
-
dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split
|
264 |
-
st.title("USMLE Step 1 Dataset Viewer")
|
265 |
-
if len(dataset) == 0:
|
266 |
-
st.write("😢 The dataset is empty.")
|
267 |
-
else:
|
268 |
-
st.write("""
|
269 |
-
🔍 Use the search box to filter questions or use the grid to scroll through the dataset.
|
270 |
-
""")
|
271 |
-
|
272 |
-
# 👩🔬 Search Box
|
273 |
-
search_term = st.text_input("Search for a specific question:", "")
|
274 |
-
|
275 |
-
# 🎛 Pagination
|
276 |
-
records_per_page = 100
|
277 |
-
num_records = len(dataset)
|
278 |
-
num_pages = max(int(num_records / records_per_page), 1)
|
279 |
-
|
280 |
-
# Skip generating the slider if num_pages is 1 (i.e., all records fit in one page)
|
281 |
-
if num_pages > 1:
|
282 |
-
page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1)))
|
283 |
-
else:
|
284 |
-
page_number = 1 # Only one page
|
285 |
-
|
286 |
-
# 📊 Display Data
|
287 |
-
start_idx = (page_number - 1) * records_per_page
|
288 |
-
end_idx = start_idx + records_per_page
|
289 |
-
|
290 |
-
# 🧪 Apply the Search Filter
|
291 |
-
filtered_data = []
|
292 |
-
for record in dataset[start_idx:end_idx]:
|
293 |
-
if isinstance(record, dict) and 'text' in record and 'id' in record:
|
294 |
-
if search_term:
|
295 |
-
if search_term.lower() in record['text'].lower():
|
296 |
-
st.markdown(record)
|
297 |
-
filtered_data.append(record)
|
298 |
-
else:
|
299 |
-
filtered_data.append(record)
|
300 |
-
|
301 |
-
# 🌐 Render the Grid
|
302 |
-
for record in filtered_data:
|
303 |
-
st.write(f"## Question ID: {record['id']}")
|
304 |
-
st.write(f"### Question:")
|
305 |
-
st.write(f"{record['text']}")
|
306 |
-
st.write(f"### Answer:")
|
307 |
-
st.write(f"{record['answer']}")
|
308 |
-
st.write("---")
|
309 |
-
|
310 |
-
st.write(f"😊 Total Records: {num_records} | 📄 Displaying {start_idx+1} to {min(end_idx, num_records)}")
|
311 |
-
|
312 |
-
# 1. Constants and Top Level UI Variables
|
313 |
-
|
314 |
-
# My Inference API Copy
|
315 |
-
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
|
316 |
-
# Meta's Original - Chat HF Free Version:
|
317 |
-
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
318 |
-
API_KEY = os.getenv('API_KEY')
|
319 |
-
MODEL1="meta-llama/Llama-2-7b-chat-hf"
|
320 |
-
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
|
321 |
-
HF_KEY = os.getenv('HF_KEY')
|
322 |
-
headers = {
|
323 |
-
"Authorization": f"Bearer {HF_KEY}",
|
324 |
-
"Content-Type": "application/json"
|
325 |
-
}
|
326 |
-
key = os.getenv('OPENAI_API_KEY')
|
327 |
-
prompt = f"Write instructions to teach discharge planning along with guidelines and patient education. List entities, features and relationships to CCDA and FHIR objects in boldface."
|
328 |
-
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
329 |
-
|
330 |
-
# 2. Prompt label button demo for LLM
|
331 |
-
def add_witty_humor_buttons():
|
332 |
-
with st.expander("Wit and Humor 🤣", expanded=True):
|
333 |
-
# Tip about the Dromedary family
|
334 |
-
st.markdown("🔬 **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.")
|
335 |
-
|
336 |
-
# Define button descriptions
|
337 |
-
descriptions = {
|
338 |
-
"Generate Limericks 😂": "Write ten random adult limericks based on quotes that are tweet length and make you laugh 🎭",
|
339 |
-
"Wise Quotes 🧙": "Generate ten wise quotes that are tweet length 🦉",
|
340 |
-
"Funny Rhymes 🎤": "Create ten funny rhymes that are tweet length 🎶",
|
341 |
-
"Medical Jokes 💉": "Create ten medical jokes that are tweet length 🏥",
|
342 |
-
"Minnesota Humor ❄️": "Create ten jokes about Minnesota that are tweet length 🌨️",
|
343 |
-
"Top Funny Stories 📖": "Create ten funny stories that are tweet length 📚",
|
344 |
-
"More Funny Rhymes 🎙️": "Create ten more funny rhymes that are tweet length 🎵"
|
345 |
-
}
|
346 |
-
|
347 |
-
# Create columns
|
348 |
-
col1, col2, col3 = st.columns([1, 1, 1], gap="small")
|
349 |
-
|
350 |
-
# Add buttons to columns
|
351 |
-
if col1.button("Wise Limericks 😂"):
|
352 |
-
StreamLLMChatResponse(descriptions["Generate Limericks 😂"])
|
353 |
-
|
354 |
-
if col2.button("Wise Quotes 🧙"):
|
355 |
-
StreamLLMChatResponse(descriptions["Wise Quotes 🧙"])
|
356 |
-
|
357 |
-
#if col3.button("Funny Rhymes 🎤"):
|
358 |
-
# StreamLLMChatResponse(descriptions["Funny Rhymes 🎤"])
|
359 |
-
|
360 |
-
col4, col5, col6 = st.columns([1, 1, 1], gap="small")
|
361 |
-
|
362 |
-
if col4.button("Top Ten Funniest Clean Jokes 💉"):
|
363 |
-
StreamLLMChatResponse(descriptions["Top Ten Funniest Clean Jokes 💉"])
|
364 |
-
|
365 |
-
if col5.button("Minnesota Humor ❄️"):
|
366 |
-
StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"])
|
367 |
-
|
368 |
-
if col6.button("Origins of Medical Science True Stories"):
|
369 |
-
StreamLLMChatResponse(descriptions["Origins of Medical Science True Stories"])
|
370 |
-
|
371 |
-
col7 = st.columns(1, gap="small")
|
372 |
-
|
373 |
-
if col7[0].button("Top Ten Best Write a streamlit python program prompts to build AI programs. 🎙️"):
|
374 |
-
StreamLLMChatResponse(descriptions["Top Ten Best Write a streamlit python program prompts to build AI programs. 🎙️"])
|
375 |
-
|
376 |
-
def SpeechSynthesis(result):
|
377 |
-
documentHTML5='''
|
378 |
-
<!DOCTYPE html>
|
379 |
-
<html>
|
380 |
-
<head>
|
381 |
-
<title>Read It Aloud</title>
|
382 |
-
<script type="text/javascript">
|
383 |
-
function readAloud() {
|
384 |
-
const text = document.getElementById("textArea").value;
|
385 |
-
const speech = new SpeechSynthesisUtterance(text);
|
386 |
-
window.speechSynthesis.speak(speech);
|
387 |
-
}
|
388 |
-
</script>
|
389 |
-
</head>
|
390 |
-
<body>
|
391 |
-
<h1>🔊 Read It Aloud</h1>
|
392 |
-
<textarea id="textArea" rows="10" cols="80">
|
393 |
-
'''
|
394 |
-
documentHTML5 = documentHTML5 + result
|
395 |
-
documentHTML5 = documentHTML5 + '''
|
396 |
-
</textarea>
|
397 |
-
<br>
|
398 |
-
<button onclick="readAloud()">🔊 Read Aloud</button>
|
399 |
-
</body>
|
400 |
-
</html>
|
401 |
-
'''
|
402 |
-
|
403 |
-
components.html(documentHTML5, width=1280, height=300)
|
404 |
-
#return result
|
405 |
-
|
406 |
-
|
407 |
-
# 3. Stream Llama Response
|
408 |
-
# @st.cache_resource
|
409 |
-
def StreamLLMChatResponse(prompt):
|
410 |
-
try:
|
411 |
-
endpoint_url = API_URL
|
412 |
-
hf_token = API_KEY
|
413 |
-
st.write('Running client ' + endpoint_url)
|
414 |
-
client = InferenceClient(endpoint_url, token=hf_token)
|
415 |
-
gen_kwargs = dict(
|
416 |
-
max_new_tokens=512,
|
417 |
-
top_k=30,
|
418 |
-
top_p=0.9,
|
419 |
-
temperature=0.2,
|
420 |
-
repetition_penalty=1.02,
|
421 |
-
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
|
422 |
-
)
|
423 |
-
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
|
424 |
-
report=[]
|
425 |
-
res_box = st.empty()
|
426 |
-
collected_chunks=[]
|
427 |
-
collected_messages=[]
|
428 |
-
allresults=''
|
429 |
-
for r in stream:
|
430 |
-
if r.token.special:
|
431 |
-
continue
|
432 |
-
if r.token.text in gen_kwargs["stop_sequences"]:
|
433 |
-
break
|
434 |
-
collected_chunks.append(r.token.text)
|
435 |
-
chunk_message = r.token.text
|
436 |
-
collected_messages.append(chunk_message)
|
437 |
-
try:
|
438 |
-
report.append(r.token.text)
|
439 |
-
if len(r.token.text) > 0:
|
440 |
-
result="".join(report).strip()
|
441 |
-
res_box.markdown(f'*{result}*')
|
442 |
-
|
443 |
-
except:
|
444 |
-
st.write('Stream llm issue')
|
445 |
-
SpeechSynthesis(result)
|
446 |
-
return result
|
447 |
-
except:
|
448 |
-
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
449 |
-
|
450 |
-
# 4. Run query with payload
|
451 |
-
def query(payload):
|
452 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
453 |
-
st.markdown(response.json())
|
454 |
-
return response.json()
|
455 |
-
def get_output(prompt):
|
456 |
-
return query({"inputs": prompt})
|
457 |
-
|
458 |
-
# 5. Auto name generated output files from time and content
|
459 |
-
def generate_filename(prompt, file_type):
|
460 |
-
central = pytz.timezone('US/Central')
|
461 |
-
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
462 |
-
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
463 |
-
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max
|
464 |
-
#safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
|
465 |
-
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
466 |
-
|
467 |
-
# 6. Speech transcription via OpenAI service
|
468 |
-
def transcribe_audio(openai_key, file_path, model):
|
469 |
-
openai.api_key = openai_key
|
470 |
-
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
471 |
-
headers = {
|
472 |
-
"Authorization": f"Bearer {openai_key}",
|
473 |
-
}
|
474 |
-
with open(file_path, 'rb') as f:
|
475 |
-
data = {'file': f}
|
476 |
-
st.write('STT transcript ' + OPENAI_API_URL)
|
477 |
-
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
|
478 |
-
if response.status_code == 200:
|
479 |
-
st.write(response.json())
|
480 |
-
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
|
481 |
-
transcript = response.json().get('text')
|
482 |
-
filename = generate_filename(transcript, 'txt')
|
483 |
-
response = chatResponse
|
484 |
-
user_prompt = transcript
|
485 |
-
create_file(filename, user_prompt, response, should_save)
|
486 |
-
return transcript
|
487 |
-
else:
|
488 |
-
st.write(response.json())
|
489 |
-
st.error("Error in API call.")
|
490 |
-
return None
|
491 |
-
|
492 |
-
# 7. Auto stop on silence audio control for recording WAV files
|
493 |
-
def save_and_play_audio(audio_recorder):
|
494 |
-
audio_bytes = audio_recorder(key='audio_recorder')
|
495 |
-
if audio_bytes:
|
496 |
-
filename = generate_filename("Recording", "wav")
|
497 |
-
with open(filename, 'wb') as f:
|
498 |
-
f.write(audio_bytes)
|
499 |
-
st.audio(audio_bytes, format="audio/wav")
|
500 |
-
return filename
|
501 |
-
return None
|
502 |
-
|
503 |
-
# 8. File creator that interprets type and creates output file for text, markdown and code
|
504 |
-
def create_file(filename, prompt, response, should_save=True):
|
505 |
-
if not should_save:
|
506 |
-
return
|
507 |
-
base_filename, ext = os.path.splitext(filename)
|
508 |
-
if ext in ['.txt', '.htm', '.md']:
|
509 |
-
with open(f"{base_filename}.md", 'w') as file:
|
510 |
-
try:
|
511 |
-
content = prompt.strip() + '\r\n' + response
|
512 |
-
file.write(content)
|
513 |
-
except:
|
514 |
-
st.write('.')
|
515 |
-
|
516 |
-
#has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
|
517 |
-
#has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
|
518 |
-
#if has_python_code:
|
519 |
-
# python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
|
520 |
-
# with open(f"{base_filename}-Code.py", 'w') as file:
|
521 |
-
# file.write(python_code)
|
522 |
-
# with open(f"{base_filename}.md", 'w') as file:
|
523 |
-
# content = prompt.strip() + '\r\n' + response
|
524 |
-
# file.write(content)
|
525 |
-
|
526 |
-
def truncate_document(document, length):
|
527 |
-
return document[:length]
|
528 |
-
def divide_document(document, max_length):
|
529 |
-
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
530 |
-
|
531 |
-
# 9. Sidebar with UI controls to review and re-run prompts and continue responses
|
532 |
-
@st.cache_resource
|
533 |
-
def get_table_download_link(file_path):
|
534 |
-
with open(file_path, 'r') as file:
|
535 |
-
data = file.read()
|
536 |
-
|
537 |
-
b64 = base64.b64encode(data.encode()).decode()
|
538 |
-
file_name = os.path.basename(file_path)
|
539 |
-
ext = os.path.splitext(file_name)[1] # get the file extension
|
540 |
-
if ext == '.txt':
|
541 |
-
mime_type = 'text/plain'
|
542 |
-
elif ext == '.py':
|
543 |
-
mime_type = 'text/plain'
|
544 |
-
elif ext == '.xlsx':
|
545 |
-
mime_type = 'text/plain'
|
546 |
-
elif ext == '.csv':
|
547 |
-
mime_type = 'text/plain'
|
548 |
-
elif ext == '.htm':
|
549 |
-
mime_type = 'text/html'
|
550 |
-
elif ext == '.md':
|
551 |
-
mime_type = 'text/markdown'
|
552 |
-
elif ext == '.wav':
|
553 |
-
mime_type = 'audio/wav'
|
554 |
-
else:
|
555 |
-
mime_type = 'application/octet-stream' # general binary data type
|
556 |
-
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
|
557 |
-
return href
|
558 |
-
|
559 |
-
|
560 |
-
def CompressXML(xml_text):
|
561 |
-
root = ET.fromstring(xml_text)
|
562 |
-
for elem in list(root.iter()):
|
563 |
-
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
|
564 |
-
elem.parent.remove(elem)
|
565 |
-
return ET.tostring(root, encoding='unicode', method="xml")
|
566 |
-
|
567 |
-
# 10. Read in and provide UI for past files
|
568 |
-
@st.cache_resource
|
569 |
-
def read_file_content(file,max_length):
|
570 |
-
if file.type == "application/json":
|
571 |
-
content = json.load(file)
|
572 |
-
return str(content)
|
573 |
-
elif file.type == "text/html" or file.type == "text/htm":
|
574 |
-
content = BeautifulSoup(file, "html.parser")
|
575 |
-
return content.text
|
576 |
-
elif file.type == "application/xml" or file.type == "text/xml":
|
577 |
-
tree = ET.parse(file)
|
578 |
-
root = tree.getroot()
|
579 |
-
xml = CompressXML(ET.tostring(root, encoding='unicode'))
|
580 |
-
return xml
|
581 |
-
elif file.type == "text/markdown" or file.type == "text/md":
|
582 |
-
md = mistune.create_markdown()
|
583 |
-
content = md(file.read().decode())
|
584 |
-
return content
|
585 |
-
elif file.type == "text/plain":
|
586 |
-
return file.getvalue().decode()
|
587 |
-
else:
|
588 |
-
return ""
|
589 |
-
|
590 |
-
# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
|
591 |
-
@st.cache_resource
|
592 |
-
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'):
|
593 |
-
model = model_choice
|
594 |
-
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
595 |
-
conversation.append({'role': 'user', 'content': prompt})
|
596 |
-
if len(document_section)>0:
|
597 |
-
conversation.append({'role': 'assistant', 'content': document_section})
|
598 |
-
start_time = time.time()
|
599 |
-
report = []
|
600 |
-
res_box = st.empty()
|
601 |
-
collected_chunks = []
|
602 |
-
collected_messages = []
|
603 |
-
|
604 |
-
st.write('LLM stream ' + 'gpt-3.5-turbo')
|
605 |
-
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
|
606 |
-
collected_chunks.append(chunk)
|
607 |
-
chunk_message = chunk['choices'][0]['delta']
|
608 |
-
collected_messages.append(chunk_message)
|
609 |
-
content=chunk["choices"][0].get("delta",{}).get("content")
|
610 |
-
try:
|
611 |
-
report.append(content)
|
612 |
-
if len(content) > 0:
|
613 |
-
result = "".join(report).strip()
|
614 |
-
res_box.markdown(f'*{result}*')
|
615 |
-
except:
|
616 |
-
st.write(' ')
|
617 |
-
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
|
618 |
-
st.write("Elapsed time:")
|
619 |
-
st.write(time.time() - start_time)
|
620 |
-
return full_reply_content
|
621 |
-
|
622 |
-
# 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain
|
623 |
-
@st.cache_resource
|
624 |
-
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
|
625 |
-
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
626 |
-
conversation.append({'role': 'user', 'content': prompt})
|
627 |
-
if len(file_content)>0:
|
628 |
-
conversation.append({'role': 'assistant', 'content': file_content})
|
629 |
-
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
|
630 |
-
return response['choices'][0]['message']['content']
|
631 |
-
|
632 |
-
def extract_mime_type(file):
|
633 |
-
if isinstance(file, str):
|
634 |
-
pattern = r"type='(.*?)'"
|
635 |
-
match = re.search(pattern, file)
|
636 |
-
if match:
|
637 |
-
return match.group(1)
|
638 |
-
else:
|
639 |
-
raise ValueError(f"Unable to extract MIME type from {file}")
|
640 |
-
elif isinstance(file, streamlit.UploadedFile):
|
641 |
-
return file.type
|
642 |
-
else:
|
643 |
-
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
|
644 |
-
|
645 |
-
def extract_file_extension(file):
|
646 |
-
# get the file name directly from the UploadedFile object
|
647 |
-
file_name = file.name
|
648 |
-
pattern = r".*?\.(.*?)$"
|
649 |
-
match = re.search(pattern, file_name)
|
650 |
-
if match:
|
651 |
-
return match.group(1)
|
652 |
-
else:
|
653 |
-
raise ValueError(f"Unable to extract file extension from {file_name}")
|
654 |
-
|
655 |
-
# Normalize input as text from PDF and other formats
|
656 |
-
@st.cache_resource
|
657 |
-
def pdf2txt(docs):
|
658 |
-
text = ""
|
659 |
-
for file in docs:
|
660 |
-
file_extension = extract_file_extension(file)
|
661 |
-
st.write(f"File type extension: {file_extension}")
|
662 |
-
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
|
663 |
-
text += file.getvalue().decode('utf-8')
|
664 |
-
elif file_extension.lower() == 'pdf':
|
665 |
-
from PyPDF2 import PdfReader
|
666 |
-
pdf = PdfReader(BytesIO(file.getvalue()))
|
667 |
-
for page in range(len(pdf.pages)):
|
668 |
-
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
|
669 |
-
return text
|
670 |
-
|
671 |
-
def txt2chunks(text):
|
672 |
-
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
673 |
-
return text_splitter.split_text(text)
|
674 |
-
|
675 |
-
# Vector Store using FAISS
|
676 |
-
@st.cache_resource
|
677 |
-
def vector_store(text_chunks):
|
678 |
-
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
679 |
-
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
680 |
-
|
681 |
-
# Memory and Retrieval chains
|
682 |
-
@st.cache_resource
|
683 |
-
def get_chain(vectorstore):
|
684 |
-
llm = ChatOpenAI()
|
685 |
-
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
686 |
-
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
|
687 |
-
|
688 |
-
def process_user_input(user_question):
|
689 |
-
response = st.session_state.conversation({'question': user_question})
|
690 |
-
st.session_state.chat_history = response['chat_history']
|
691 |
-
for i, message in enumerate(st.session_state.chat_history):
|
692 |
-
template = user_template if i % 2 == 0 else bot_template
|
693 |
-
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
694 |
-
filename = generate_filename(user_question, 'txt')
|
695 |
-
response = message.content
|
696 |
-
user_prompt = user_question
|
697 |
-
create_file(filename, user_prompt, response, should_save)
|
698 |
-
|
699 |
-
def divide_prompt(prompt, max_length):
|
700 |
-
words = prompt.split()
|
701 |
-
chunks = []
|
702 |
-
current_chunk = []
|
703 |
-
current_length = 0
|
704 |
-
for word in words:
|
705 |
-
if len(word) + current_length <= max_length:
|
706 |
-
current_length += len(word) + 1
|
707 |
-
current_chunk.append(word)
|
708 |
-
else:
|
709 |
-
chunks.append(' '.join(current_chunk))
|
710 |
-
current_chunk = [word]
|
711 |
-
current_length = len(word)
|
712 |
-
chunks.append(' '.join(current_chunk))
|
713 |
-
return chunks
|
714 |
-
|
715 |
-
|
716 |
-
# 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
|
717 |
-
|
718 |
-
@st.cache_resource
|
719 |
-
def create_zip_of_files(files):
|
720 |
-
zip_name = "all_files.zip"
|
721 |
-
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
722 |
-
for file in files:
|
723 |
-
zipf.write(file)
|
724 |
-
return zip_name
|
725 |
-
|
726 |
-
@st.cache_resource
|
727 |
-
def get_zip_download_link(zip_file):
|
728 |
-
with open(zip_file, 'rb') as f:
|
729 |
-
data = f.read()
|
730 |
-
b64 = base64.b64encode(data).decode()
|
731 |
-
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
732 |
-
return href
|
733 |
-
|
734 |
-
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
|
735 |
-
# My Inference Endpoint
|
736 |
-
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
|
737 |
-
# Original
|
738 |
-
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
|
739 |
-
MODEL2 = "openai/whisper-small.en"
|
740 |
-
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
|
741 |
-
#headers = {
|
742 |
-
# "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
|
743 |
-
# "Content-Type": "audio/wav"
|
744 |
-
#}
|
745 |
-
# HF_KEY = os.getenv('HF_KEY')
|
746 |
-
HF_KEY = st.secrets['HF_KEY']
|
747 |
-
headers = {
|
748 |
-
"Authorization": f"Bearer {HF_KEY}",
|
749 |
-
"Content-Type": "audio/wav"
|
750 |
-
}
|
751 |
-
|
752 |
-
#@st.cache_resource
|
753 |
-
def query(filename):
|
754 |
-
with open(filename, "rb") as f:
|
755 |
-
data = f.read()
|
756 |
-
response = requests.post(API_URL_IE, headers=headers, data=data)
|
757 |
-
return response.json()
|
758 |
-
|
759 |
-
def generate_filename(prompt, file_type):
|
760 |
-
central = pytz.timezone('US/Central')
|
761 |
-
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
762 |
-
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
763 |
-
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
764 |
-
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
765 |
-
|
766 |
-
# 15. Audio recorder to Wav file
|
767 |
-
def save_and_play_audio(audio_recorder):
|
768 |
-
audio_bytes = audio_recorder()
|
769 |
-
if audio_bytes:
|
770 |
-
filename = generate_filename("Recording", "wav")
|
771 |
-
with open(filename, 'wb') as f:
|
772 |
-
f.write(audio_bytes)
|
773 |
-
st.audio(audio_bytes, format="audio/wav")
|
774 |
-
return filename
|
775 |
-
|
776 |
-
# 16. Speech transcription to file output
|
777 |
-
def transcribe_audio(filename):
|
778 |
-
output = query(filename)
|
779 |
-
return output
|
780 |
-
|
781 |
-
def whisper_main():
|
782 |
-
#st.title("Speech to Text")
|
783 |
-
#st.write("Record your speech and get the text.")
|
784 |
-
|
785 |
-
# Audio, transcribe, GPT:
|
786 |
-
filename = save_and_play_audio(audio_recorder)
|
787 |
-
if filename is not None:
|
788 |
-
transcription = transcribe_audio(filename)
|
789 |
-
try:
|
790 |
-
transcript = transcription['text']
|
791 |
-
st.write(transcript)
|
792 |
-
|
793 |
-
except:
|
794 |
-
transcript=''
|
795 |
-
st.write(transcript)
|
796 |
-
|
797 |
-
|
798 |
-
# Whisper to GPT: New!! ---------------------------------------------------------------------
|
799 |
-
st.write('Reasoning with your inputs with GPT..')
|
800 |
-
response = chat_with_model(transcript)
|
801 |
-
st.write('Response:')
|
802 |
-
st.write(response)
|
803 |
-
|
804 |
-
filename = generate_filename(response, "txt")
|
805 |
-
create_file(filename, transcript, response, should_save)
|
806 |
-
# Whisper to GPT: New!! ---------------------------------------------------------------------
|
807 |
-
|
808 |
-
|
809 |
-
# Whisper to Llama:
|
810 |
-
response = StreamLLMChatResponse(transcript)
|
811 |
-
filename_txt = generate_filename(transcript, "md")
|
812 |
-
create_file(filename_txt, transcript, response, should_save)
|
813 |
-
|
814 |
-
filename_wav = filename_txt.replace('.txt', '.wav')
|
815 |
-
import shutil
|
816 |
-
try:
|
817 |
-
if os.path.exists(filename):
|
818 |
-
shutil.copyfile(filename, filename_wav)
|
819 |
-
except:
|
820 |
-
st.write('.')
|
821 |
-
|
822 |
-
if os.path.exists(filename):
|
823 |
-
os.remove(filename)
|
824 |
-
|
825 |
-
#st.experimental_rerun()
|
826 |
-
#except:
|
827 |
-
# st.write('Starting Whisper Model on GPU. Please retry in 30 seconds.')
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
# Sample function to demonstrate a response, replace with your own logic
|
832 |
-
def StreamMedChatResponse(topic):
|
833 |
-
st.write(f"Showing resources or questions related to: {topic}")
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
def add_medical_exam_buttons():
|
838 |
-
# Medical exam terminology descriptions
|
839 |
-
descriptions = {
|
840 |
-
"White Blood Cells 🌊": "3 Q&A with emojis about types, facts, function, inputs and outputs of white blood cells 🎥",
|
841 |
-
"CT Imaging🦠": "3 Q&A with emojis on CT Imaging post surgery, how to, what to look for 💊",
|
842 |
-
"Hematoma 💉": "3 Q&A with emojis about hematoma and infection care and study including bacteria cultures and tests or labs💪",
|
843 |
-
"Post Surgery Wound Care 🍌": "3 Q&A with emojis on wound care, and good bedside manner 🩸",
|
844 |
-
"Healing and humor 💊": "3 Q&A with emojis on stories and humor about healing and caregiving 🚑",
|
845 |
-
"Psychology of bedside manner 🧬": "3 Q&A with emojis on bedside manner and how to make patients feel at ease🛠",
|
846 |
-
"CT scan 💊": "3 Q&A with analysis on infection using CT scan and packing for skin, cellulitus and fascia 🩺"
|
847 |
-
}
|
848 |
-
|
849 |
-
# Expander for medical topics
|
850 |
-
with st.expander("Medical Licensing Exam Topics 📚", expanded=False):
|
851 |
-
st.markdown("🩺 **Important**: Variety of topics for medical licensing exams.")
|
852 |
-
|
853 |
-
# Create buttons for each description with unique keys
|
854 |
-
for idx, (label, content) in enumerate(descriptions.items()):
|
855 |
-
button_key = f"button_{idx}"
|
856 |
-
if st.button(label, key=button_key):
|
857 |
-
st.write(f"Running {label}")
|
858 |
-
input='Create markdown outline for definition of topic ' + label + ' also short quiz with appropriate emojis and definitions for: ' + content
|
859 |
-
response=StreamLLMChatResponse(input)
|
860 |
-
filename = generate_filename(response, 'txt')
|
861 |
-
create_file(filename, input, response, should_save)
|
862 |
-
|
863 |
-
def add_medical_exam_buttons2():
|
864 |
-
with st.expander("Medical Licensing Exam Topics 📚", expanded=False):
|
865 |
-
st.markdown("🩺 **Important**: This section provides a variety of medical topics that are often encountered in medical licensing exams.")
|
866 |
-
|
867 |
-
# Define medical exam terminology descriptions
|
868 |
-
descriptions = {
|
869 |
-
"White Blood Cells 🌊": "3 Questions and Answers with emojis about white blood cells 🎥",
|
870 |
-
"CT Imaging🦠": "3 Questions and Answers with emojis about CT Imaging of post surgery abscess, hematoma, and cerosanguiness fluid 💊",
|
871 |
-
"Hematoma 💉": "3 Questions and Answers with emojis about hematoma and infection and how heat helps white blood cells 💪",
|
872 |
-
"Post Surgery Wound Care 🍌": "3 Questions and Answers with emojis about wound care and how to help as a caregiver🩸",
|
873 |
-
"Healing and humor 💊": "3 Questions and Answers with emojis on the use of stories and humor to help patients and family 🚑",
|
874 |
-
"Psychology of bedside manner 🧬": "3 Questions and Answers with emojis about good bedside manner 🛠",
|
875 |
-
"CT scan 💊": "3 Questions and Answers with analysis of bacteria and understanding infection using cultures and CT scan 🩺"
|
876 |
-
}
|
877 |
-
|
878 |
-
# Create columns
|
879 |
-
col1, col2, col3, col4 = st.columns([1, 1, 1, 1], gap="small")
|
880 |
-
|
881 |
-
# Add buttons to columns
|
882 |
-
if col1.button("Ultrasound with Doppler 🌊"):
|
883 |
-
StreamLLMChatResponse(descriptions["Ultrasound with Doppler 🌊"])
|
884 |
-
|
885 |
-
if col2.button("Oseltamivir 🦠"):
|
886 |
-
StreamLLMChatResponse(descriptions["Oseltamivir 🦠"])
|
887 |
-
|
888 |
-
if col3.button("IM Epinephrine 💉"):
|
889 |
-
StreamLLMChatResponse(descriptions["IM Epinephrine 💉"])
|
890 |
-
|
891 |
-
if col4.button("Hypokalemia 🍌"):
|
892 |
-
StreamLLMChatResponse(descriptions["Hypokalemia 🍌"])
|
893 |
-
|
894 |
-
col5, col6, col7, col8 = st.columns([1, 1, 1, 1], gap="small")
|
895 |
-
|
896 |
-
if col5.button("Succinylcholine 💊"):
|
897 |
-
StreamLLMChatResponse(descriptions["Succinylcholine 💊"])
|
898 |
-
|
899 |
-
if col6.button("Phosphoinositol System 🧬"):
|
900 |
-
StreamLLMChatResponse(descriptions["Phosphoinositol System 🧬"])
|
901 |
-
|
902 |
-
if col7.button("Ramipril 💊"):
|
903 |
-
StreamLLMChatResponse(descriptions["Ramipril 💊"])
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
# 17. Main
|
908 |
-
def main():
|
909 |
-
prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each."
|
910 |
-
# Add Wit and Humor buttons
|
911 |
-
# add_witty_humor_buttons()
|
912 |
-
# add_medical_exam_buttons()
|
913 |
-
|
914 |
-
with st.expander("Prompts 📚", expanded=False):
|
915 |
-
example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.")
|
916 |
-
if st.button("Run Prompt With Llama model", help="Click to run the prompt."):
|
917 |
-
try:
|
918 |
-
response=StreamLLMChatResponse(example_input)
|
919 |
-
create_file(filename, example_input, response, should_save)
|
920 |
-
except:
|
921 |
-
st.write('Llama model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.')
|
922 |
-
|
923 |
-
openai.api_key = os.getenv('OPENAI_API_KEY')
|
924 |
-
if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
|
925 |
-
|
926 |
-
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
927 |
-
choice = st.sidebar.selectbox("Output File Type:", menu)
|
928 |
-
|
929 |
-
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
930 |
-
|
931 |
-
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
932 |
-
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
933 |
-
with collength:
|
934 |
-
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
|
935 |
-
with colupload:
|
936 |
-
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
|
937 |
-
document_sections = deque()
|
938 |
-
document_responses = {}
|
939 |
-
if uploaded_file is not None:
|
940 |
-
file_content = read_file_content(uploaded_file, max_length)
|
941 |
-
document_sections.extend(divide_document(file_content, max_length))
|
942 |
-
if len(document_sections) > 0:
|
943 |
-
if st.button("👁️ View Upload"):
|
944 |
-
st.markdown("**Sections of the uploaded file:**")
|
945 |
-
for i, section in enumerate(list(document_sections)):
|
946 |
-
st.markdown(f"**Section {i+1}**\n{section}")
|
947 |
-
st.markdown("**Chat with the model:**")
|
948 |
-
for i, section in enumerate(list(document_sections)):
|
949 |
-
if i in document_responses:
|
950 |
-
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
|
951 |
-
else:
|
952 |
-
if st.button(f"Chat about Section {i+1}"):
|
953 |
-
st.write('Reasoning with your inputs...')
|
954 |
-
#response = chat_with_model(user_prompt, section, model_choice)
|
955 |
-
st.write('Response:')
|
956 |
-
st.write(response)
|
957 |
-
document_responses[i] = response
|
958 |
-
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
|
959 |
-
create_file(filename, user_prompt, response, should_save)
|
960 |
-
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
961 |
-
|
962 |
-
|
963 |
-
if st.button('💬 Chat'):
|
964 |
-
st.write('Reasoning with your inputs...')
|
965 |
-
user_prompt_sections = divide_prompt(user_prompt, max_length)
|
966 |
-
full_response = ''
|
967 |
-
for prompt_section in user_prompt_sections:
|
968 |
-
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
|
969 |
-
full_response += response + '\n' # Combine the responses
|
970 |
-
response = full_response
|
971 |
-
st.write('Response:')
|
972 |
-
st.write(response)
|
973 |
-
filename = generate_filename(user_prompt, choice)
|
974 |
-
create_file(filename, user_prompt, response, should_save)
|
975 |
-
|
976 |
-
# Compose a file sidebar of markdown md files:
|
977 |
-
all_files = glob.glob("*.md")
|
978 |
-
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
|
979 |
-
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
980 |
-
if st.sidebar.button("🗑 Delete All Text"):
|
981 |
-
for file in all_files:
|
982 |
-
os.remove(file)
|
983 |
-
st.experimental_rerun()
|
984 |
-
if st.sidebar.button("⬇️ Download All"):
|
985 |
-
zip_file = create_zip_of_files(all_files)
|
986 |
-
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
|
987 |
-
file_contents=''
|
988 |
-
next_action=''
|
989 |
-
for file in all_files:
|
990 |
-
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
|
991 |
-
with col1:
|
992 |
-
if st.button("🌐", key="md_"+file): # md emoji button
|
993 |
-
with open(file, 'r') as f:
|
994 |
-
file_contents = f.read()
|
995 |
-
next_action='md'
|
996 |
-
with col2:
|
997 |
-
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
|
998 |
-
with col3:
|
999 |
-
if st.button("📂", key="open_"+file): # open emoji button
|
1000 |
-
with open(file, 'r') as f:
|
1001 |
-
file_contents = f.read()
|
1002 |
-
next_action='open'
|
1003 |
-
with col4:
|
1004 |
-
if st.button("🔍", key="read_"+file): # search emoji button
|
1005 |
-
with open(file, 'r') as f:
|
1006 |
-
file_contents = f.read()
|
1007 |
-
next_action='search'
|
1008 |
-
with col5:
|
1009 |
-
if st.button("🗑", key="delete_"+file):
|
1010 |
-
os.remove(file)
|
1011 |
-
st.experimental_rerun()
|
1012 |
-
|
1013 |
-
|
1014 |
-
if len(file_contents) > 0:
|
1015 |
-
if next_action=='open':
|
1016 |
-
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
1017 |
-
if next_action=='md':
|
1018 |
-
st.markdown(file_contents)
|
1019 |
-
|
1020 |
-
buttonlabel = '🔍Run with Llama and GPT.'
|
1021 |
-
if st.button(key='RunWithLlamaandGPT', label = buttonlabel):
|
1022 |
-
user_prompt = file_contents
|
1023 |
-
|
1024 |
-
# Llama versus GPT Battle!
|
1025 |
-
all=""
|
1026 |
-
try:
|
1027 |
-
st.write('🔍Running with Llama.')
|
1028 |
-
response = StreamLLMChatResponse(file_contents)
|
1029 |
-
filename = generate_filename(user_prompt, "md")
|
1030 |
-
create_file(filename, file_contents, response, should_save)
|
1031 |
-
all=response
|
1032 |
-
#SpeechSynthesis(response)
|
1033 |
-
except:
|
1034 |
-
st.markdown('Llama is sleeping. Restart ETA 30 seconds.')
|
1035 |
-
|
1036 |
-
# gpt
|
1037 |
-
try:
|
1038 |
-
st.write('🔍Running with GPT.')
|
1039 |
-
response2 = chat_with_model(user_prompt, file_contents, model_choice)
|
1040 |
-
filename2 = generate_filename(file_contents, choice)
|
1041 |
-
create_file(filename2, user_prompt, response, should_save)
|
1042 |
-
all=all+response2
|
1043 |
-
#SpeechSynthesis(response2)
|
1044 |
-
except:
|
1045 |
-
st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
|
1046 |
-
|
1047 |
-
SpeechSynthesis(all)
|
1048 |
-
|
1049 |
-
|
1050 |
-
if next_action=='search':
|
1051 |
-
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
1052 |
-
st.write('🔍Running with Llama and GPT.')
|
1053 |
-
|
1054 |
-
user_prompt = file_contents
|
1055 |
-
|
1056 |
-
# Llama versus GPT Battle!
|
1057 |
-
all=""
|
1058 |
-
try:
|
1059 |
-
st.write('🔍Running with Llama.')
|
1060 |
-
response = StreamLLMChatResponse(file_contents)
|
1061 |
-
filename = generate_filename(user_prompt, ".md")
|
1062 |
-
create_file(filename, file_contents, response, should_save)
|
1063 |
-
all=response
|
1064 |
-
#SpeechSynthesis(response)
|
1065 |
-
except:
|
1066 |
-
st.markdown('Llama is sleeping. Restart ETA 30 seconds.')
|
1067 |
-
|
1068 |
-
# gpt
|
1069 |
-
try:
|
1070 |
-
st.write('🔍Running with GPT.')
|
1071 |
-
response2 = chat_with_model(user_prompt, file_contents, model_choice)
|
1072 |
-
filename2 = generate_filename(file_contents, choice)
|
1073 |
-
create_file(filename2, user_prompt, response, should_save)
|
1074 |
-
all=all+response2
|
1075 |
-
#SpeechSynthesis(response2)
|
1076 |
-
except:
|
1077 |
-
st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
|
1078 |
-
|
1079 |
-
SpeechSynthesis(all)
|
1080 |
-
|
1081 |
-
|
1082 |
-
# Function to encode file to base64
|
1083 |
-
def get_base64_encoded_file(file_path):
|
1084 |
-
with open(file_path, "rb") as file:
|
1085 |
-
return base64.b64encode(file.read()).decode()
|
1086 |
-
|
1087 |
-
# Function to create a download link
|
1088 |
-
def get_audio_download_link(file_path):
|
1089 |
-
base64_file = get_base64_encoded_file(file_path)
|
1090 |
-
return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>'
|
1091 |
-
|
1092 |
-
# Compose a file sidebar of past encounters
|
1093 |
-
all_files = glob.glob("*.wav")
|
1094 |
-
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
|
1095 |
-
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
1096 |
-
|
1097 |
-
filekey = 'delall'
|
1098 |
-
if st.sidebar.button("🗑 Delete All Audio", key=filekey):
|
1099 |
-
for file in all_files:
|
1100 |
-
os.remove(file)
|
1101 |
-
st.experimental_rerun()
|
1102 |
-
|
1103 |
-
for file in all_files:
|
1104 |
-
col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed
|
1105 |
-
with col1:
|
1106 |
-
st.markdown(file)
|
1107 |
-
if st.button("🎵", key="play_" + file): # play emoji button
|
1108 |
-
audio_file = open(file, 'rb')
|
1109 |
-
audio_bytes = audio_file.read()
|
1110 |
-
st.audio(audio_bytes, format='audio/wav')
|
1111 |
-
#st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
|
1112 |
-
#st.text_input(label="", value=file)
|
1113 |
-
with col2:
|
1114 |
-
if st.button("🗑", key="delete_" + file):
|
1115 |
-
os.remove(file)
|
1116 |
-
st.experimental_rerun()
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
# Feedback
|
1121 |
-
# Step: Give User a Way to Upvote or Downvote
|
1122 |
-
GiveFeedback=False
|
1123 |
-
if GiveFeedback:
|
1124 |
-
with st.expander("Give your feedback 👍", expanded=False):
|
1125 |
-
|
1126 |
-
feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote"))
|
1127 |
-
if feedback == "👍 Upvote":
|
1128 |
-
st.write("You upvoted 👍. Thank you for your feedback!")
|
1129 |
-
else:
|
1130 |
-
st.write("You downvoted 👎. Thank you for your feedback!")
|
1131 |
-
|
1132 |
-
load_dotenv()
|
1133 |
-
st.write(css, unsafe_allow_html=True)
|
1134 |
-
st.header("Chat with documents :books:")
|
1135 |
-
user_question = st.text_input("Ask a question about your documents:")
|
1136 |
-
if user_question:
|
1137 |
-
process_user_input(user_question)
|
1138 |
-
with st.sidebar:
|
1139 |
-
st.subheader("Your documents")
|
1140 |
-
docs = st.file_uploader("import documents", accept_multiple_files=True)
|
1141 |
-
with st.spinner("Processing"):
|
1142 |
-
raw = pdf2txt(docs)
|
1143 |
-
if len(raw) > 0:
|
1144 |
-
length = str(len(raw))
|
1145 |
-
text_chunks = txt2chunks(raw)
|
1146 |
-
vectorstore = vector_store(text_chunks)
|
1147 |
-
st.session_state.conversation = get_chain(vectorstore)
|
1148 |
-
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
|
1149 |
-
filename = generate_filename(raw, 'txt')
|
1150 |
-
create_file(filename, raw, '', should_save)
|
1151 |
-
|
1152 |
-
# Relocated! Hope you like your new space - enjoy!
|
1153 |
-
# Display instructions and handle query parameters
|
1154 |
-
st.markdown("## Glossary Lookup\nEnter a term in the URL query, like `?q=Nanotechnology` or `?query=Martian Syndicate`.")
|
1155 |
-
try:
|
1156 |
-
query_params = st.query_params
|
1157 |
-
#query = (query_params.get('q') or query_params.get('query') or [''])[0]
|
1158 |
-
query = (query_params.get('q') or query_params.get('query') or [''])
|
1159 |
-
st.markdown('# Running query: ' + query)
|
1160 |
-
if query: search_glossary(query)
|
1161 |
-
except:
|
1162 |
-
st.markdown('No glossary lookup')
|
1163 |
-
|
1164 |
-
# Display the glossary grid
|
1165 |
-
st.title("Transhuman Space Glossary 🌌")
|
1166 |
-
display_glossary_grid(transhuman_glossary)
|
1167 |
-
|
1168 |
-
st.title("🌌🚀 Transhuman Space Encyclopedia")
|
1169 |
-
st.markdown("## Explore the universe of Transhuman Space through interactive storytelling and encyclopedic knowledge.🌠")
|
1170 |
-
|
1171 |
-
display_buttons_with_scores()
|
1172 |
-
|
1173 |
-
display_images_and_wikipedia_summaries()
|
1174 |
-
|
1175 |
-
# Assuming the transhuman_glossary and other setup code remains the same
|
1176 |
-
#st.write("Current Query Parameters:", st.query_params)
|
1177 |
-
#st.markdown("### Query Parameters - These Deep Link Map to Remixable Methods, Navigate or Trigger Functionalities")
|
1178 |
-
|
1179 |
-
# Example: Using query parameters to navigate or trigger functionalities
|
1180 |
-
if 'action' in st.query_params:
|
1181 |
-
action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter
|
1182 |
-
if action == 'show_message':
|
1183 |
-
st.success("Showing a message because 'action=show_message' was found in the URL.")
|
1184 |
-
elif action == 'clear':
|
1185 |
-
clear_query_params()
|
1186 |
-
st.experimental_rerun()
|
1187 |
-
|
1188 |
-
# Handling repeated keys
|
1189 |
-
if 'multi' in st.query_params:
|
1190 |
-
multi_values = get_all_query_params('multi')
|
1191 |
-
st.write("Values for 'multi':", multi_values)
|
1192 |
-
|
1193 |
-
# Manual entry for demonstration
|
1194 |
-
st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2")
|
1195 |
-
|
1196 |
-
if 'query' in st.query_params:
|
1197 |
-
query = st.query_params['query'][0] # Get the query parameter
|
1198 |
-
# Display content or image based on the query
|
1199 |
-
display_content_or_image(query)
|
1200 |
-
|
1201 |
-
# Add a clear query parameters button for convenience
|
1202 |
-
if st.button("Clear Query Parameters", key='ClearQueryParams'):
|
1203 |
-
# This will clear the browser URL's query parameters
|
1204 |
-
st.experimental_set_query_params
|
1205 |
-
st.experimental_rerun()
|
1206 |
-
|
1207 |
-
# 18. Run AI Pipeline
|
1208 |
-
if __name__ == "__main__":
|
1209 |
-
whisper_main()
|
1210 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|