File size: 5,774 Bytes
5493191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2898f3
 
5493191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2898f3
5493191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2898f3
5493191
 
 
 
 
 
 
 
 
 
 
c2898f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import numpy as np
from huggingface_hub import hf_hub_url, cached_download
import PIL
import onnx
import onnxruntime

config_file_url = hf_hub_url("Jacopo/ToonClip", filename="model.onnx")
model_file = cached_download(config_file_url)

onnx_model = onnx.load(model_file)
onnx.checker.check_model(onnx_model)

opts = onnxruntime.SessionOptions()
opts.intra_op_num_threads = 16
ort_session = onnxruntime.InferenceSession(model_file, sess_options=opts)

input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name

def normalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)):
    # x = (x - mean) / std
    x = np.asarray(x, dtype=np.float32)
    if len(x.shape) == 4:
        for dim in range(3):
            x[:, dim, :, :] = (x[:, dim, :, :] - mean[dim]) / std[dim]
    if len(x.shape) == 3:
        for dim in range(3):
            x[dim, :, :] = (x[dim, :, :] - mean[dim]) / std[dim]

    return x 

def denormalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)):
    # x = (x * std) + mean
    x = np.asarray(x, dtype=np.float32)
    if len(x.shape) == 4:
        for dim in range(3):
            x[:, dim, :, :] = (x[:, dim, :, :] * std[dim]) + mean[dim]
    if len(x.shape) == 3:
        for dim in range(3):
            x[dim, :, :] = (x[dim, :, :] * std[dim]) + mean[dim]

    return x 

def nogan(input_img):
    i = np.asarray(input_img)
    i = i.astype("float32")
    i = np.transpose(i, (2, 0, 1))
    i = np.expand_dims(i, 0)
    i = i / 255.0
    i = normalize(i, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225))

    ort_outs = ort_session.run([output_name], {input_name: i})
    output = ort_outs
    output = output[0][0]

    output = denormalize(output, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    output = output * 255.0
    output = output.astype('uint8')
    output = np.transpose(output, (1, 2, 0))
    output_image = PIL.Image.fromarray(output, 'RGB')

    return output_image

title = "Zoom, CLIP, Toon"
description = """Image to Toon Using AI"""
article = """
<style> 
	.boxes{ 
	    width:50%; 
	    float:left; 
    } 
	#mainDiv{ 
		width:50%; 
        margin:auto; 
	} 
	img{ 
		max-width:100%; 
	}
</style> 
<p style='text-align: center'>The \"ToonClip\" model was trained by <a href='https://twitter.com/JacopoMangia' target='_blank'>Jacopo Mangiavacchi</a> and available at <a href='https://github.com/jacopomangiavacchi/ComicsHeroMobileUNet' target='_blank'>Github Repo ComicsHeroMobileUNet</a></p>
<br>
<p style='text-align: center'>Example images: </p>
<p>
  <div id='mainDiv'> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i01.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o01.png' alt='Output01'/>
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i02.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o02.png' alt='Output01'/> 
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i03.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o03.png' alt='Output01'/>
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i04.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o04.png' alt='Output01'/> 
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i05.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o05.png' alt='Output01'/>
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i06.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o06.png' alt='Output01'/>
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i07.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o07.png' alt='Output01'/> 
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i08.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o08.png' alt='Output01'/>
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i09.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o09.png' alt='Output01'/> 
    </div> 
    <div id='divOne' class='boxes'> 
	<img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/i10.jpeg' alt='Example01'/>
    </div> 
    <div id='divTwo' class='boxes'> 
	<img <img src='https://hf.space/gradioiframe/Jacopo/ToonClip/file/o10.png' alt='Output01'/>
    </div> 
  </div>
</p>
"""

examples=[['i01.jpeg'], ['i02.jpeg'], ['i03.jpeg'], ['i04.jpeg'], ['i05.jpeg'], ['i06.jpeg'], ['i07.jpeg'], ['i08.jpeg'], ['i09.jpeg'], ['i10.jpeg']]

iface = gr.Interface(
    nogan, 
    gr.inputs.Image(type="pil", shape=(1024, 1024)),
    gr.outputs.Image(type="pil"),
    title=title,
    description=description,
    article=article,
    examples=examples)

iface.launch()