Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -44,6 +44,7 @@ USE_TORCH_COMPILE = 0
|
|
44 |
ENABLE_CPU_OFFLOAD = 0
|
45 |
|
46 |
|
|
|
47 |
if torch.cuda.is_available():
|
48 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
49 |
"fluently/Fluently-XL-v4",
|
@@ -58,41 +59,42 @@ if torch.cuda.is_available():
|
|
58 |
|
59 |
pipe.to("cuda")
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
75 |
-
|
76 |
-
if not use_negative_prompt:
|
77 |
-
negative_prompt = "" # type: ignore
|
78 |
-
|
79 |
-
images = pipe(
|
80 |
-
prompt=prompt,
|
81 |
-
negative_prompt=negative_prompt,
|
82 |
-
width=width,
|
83 |
-
height=height,
|
84 |
-
guidance_scale=guidance_scale,
|
85 |
-
num_inference_steps=20,
|
86 |
-
num_images_per_prompt=1,
|
87 |
-
cross_attention_kwargs={"scale": 0.65},
|
88 |
-
output_type="pil",
|
89 |
-
).images
|
90 |
-
image_paths = [save_image(img, prompt) for img in images]
|
91 |
-
|
92 |
-
download_links = [create_download_link(path) for path in image_paths]
|
93 |
-
|
94 |
-
print(image_paths)
|
95 |
-
return image_paths, seed, download_links
|
96 |
|
97 |
examples = [
|
98 |
"a modern hospital room with advanced medical equipment and a patient resting comfortably",
|
|
|
44 |
ENABLE_CPU_OFFLOAD = 0
|
45 |
|
46 |
|
47 |
+
|
48 |
if torch.cuda.is_available():
|
49 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
50 |
"fluently/Fluently-XL-v4",
|
|
|
59 |
|
60 |
pipe.to("cuda")
|
61 |
|
62 |
+
def generate(
|
63 |
+
prompt: str,
|
64 |
+
negative_prompt: str = "",
|
65 |
+
use_negative_prompt: bool = False,
|
66 |
+
seed: int = 0,
|
67 |
+
width: int = 1024,
|
68 |
+
height: int = 1024,
|
69 |
+
guidance_scale: float = 3,
|
70 |
+
randomize_seed: bool = False,
|
71 |
+
):
|
72 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
73 |
+
|
74 |
+
if not use_negative_prompt:
|
75 |
+
negative_prompt = "" # type: ignore
|
76 |
+
|
77 |
+
images = pipe(
|
78 |
+
prompt=prompt,
|
79 |
+
negative_prompt=negative_prompt,
|
80 |
+
width=width,
|
81 |
+
height=height,
|
82 |
+
guidance_scale=guidance_scale,
|
83 |
+
num_inference_steps=20,
|
84 |
+
num_images_per_prompt=1,
|
85 |
+
cross_attention_kwargs={"scale": 0.65},
|
86 |
+
output_type="pil",
|
87 |
+
).images
|
88 |
+
image_paths = [save_image(img, prompt) for img in images]
|
89 |
+
|
90 |
+
download_links = [create_download_link(path) for path in image_paths]
|
91 |
+
|
92 |
+
print(image_paths)
|
93 |
+
return image_paths, seed, download_links
|
94 |
+
else:
|
95 |
+
st.warning("CUDA is not available. The demo may not work on CPU.")
|
96 |
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
examples = [
|
100 |
"a modern hospital room with advanced medical equipment and a patient resting comfortably",
|