Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import uuid | |
| import base64 | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import spaces | |
| import torch | |
| import glob | |
| from datetime import datetime | |
| import pandas as pd | |
| import json | |
| import re | |
| from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
| DESCRIPTION = """# ๐จ ArtForge: Community AI Gallery | |
| Create, curate, and compete with AI-generated art. Join our creative multiplayer experience! ๐ผ๏ธ๐โจ | |
| """ | |
| # Global variables | |
| image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created']) | |
| LIKES_CACHE_FILE = "likes_cache.json" | |
| def load_likes_cache(): | |
| if os.path.exists(LIKES_CACHE_FILE): | |
| with open(LIKES_CACHE_FILE, 'r') as f: | |
| return json.load(f) | |
| return {} | |
| def save_likes_cache(cache): | |
| with open(LIKES_CACHE_FILE, 'w') as f: | |
| json.dump(cache, f) | |
| likes_cache = load_likes_cache() | |
| def create_download_link(filename): | |
| with open(filename, "rb") as file: | |
| encoded_string = base64.b64encode(file.read()).decode('utf-8') | |
| download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>' | |
| return download_link | |
| def save_image(img, prompt): | |
| global image_metadata, likes_cache | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| safe_prompt = re.sub(r'[^\w\s-]', '', prompt.lower())[:50] # Limit to 50 characters | |
| safe_prompt = re.sub(r'[-\s]+', '-', safe_prompt).strip('-') | |
| filename = f"{timestamp}_{safe_prompt}.png" | |
| img.save(filename) | |
| new_row = pd.DataFrame({ | |
| 'Filename': [filename], | |
| 'Prompt': [prompt], | |
| 'Likes': [0], | |
| 'Dislikes': [0], | |
| 'Hearts': [0], | |
| 'Created': [datetime.now()] | |
| }) | |
| image_metadata = pd.concat([image_metadata, new_row], ignore_index=True) | |
| likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0} | |
| save_likes_cache(likes_cache) | |
| return filename | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def get_image_gallery(): | |
| global image_metadata | |
| image_files = image_metadata['Filename'].tolist() | |
| return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)] | |
| def get_image_caption(filename): | |
| global likes_cache, image_metadata | |
| if filename in likes_cache: | |
| likes = likes_cache[filename]['likes'] | |
| dislikes = likes_cache[filename]['dislikes'] | |
| hearts = likes_cache[filename]['hearts'] | |
| prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0] | |
| return f"{filename}\nPrompt: {prompt}\n๐ {likes} ๐ {dislikes} โค๏ธ {hearts}" | |
| return filename | |
| def delete_all_images(): | |
| global image_metadata, likes_cache | |
| for file in image_metadata['Filename']: | |
| if os.path.exists(file): | |
| os.remove(file) | |
| image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created']) | |
| likes_cache = {} | |
| save_likes_cache(likes_cache) | |
| return get_image_gallery(), image_metadata.values.tolist() | |
| def delete_image(filename): | |
| global image_metadata, likes_cache | |
| if filename and os.path.exists(filename): | |
| os.remove(filename) | |
| image_metadata = image_metadata[image_metadata['Filename'] != filename] | |
| if filename in likes_cache: | |
| del likes_cache[filename] | |
| save_likes_cache(likes_cache) | |
| return get_image_gallery(), image_metadata.values.tolist() | |
| def vote(filename, vote_type): | |
| global likes_cache | |
| if filename in likes_cache: | |
| likes_cache[filename][vote_type.lower()] += 1 | |
| save_likes_cache(likes_cache) | |
| return get_image_gallery(), image_metadata.values.tolist() | |
| def get_random_style(): | |
| styles = [ | |
| "Impressionist", "Cubist", "Surrealist", "Abstract Expressionist", | |
| "Pop Art", "Minimalist", "Baroque", "Art Nouveau", "Pointillist", "Fauvism" | |
| ] | |
| return random.choice(styles) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo may not work on CPU.</p>" | |
| USE_TORCH_COMPILE = 0 | |
| ENABLE_CPU_OFFLOAD = 0 | |
| if torch.cuda.is_available(): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "fluently/Fluently-XL-v4", | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| ) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle") | |
| pipe.set_adapters("dalle") | |
| pipe.to("cuda") | |
| def generate( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3, | |
| randomize_seed: bool = False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| if not use_negative_prompt: | |
| negative_prompt = "" | |
| images = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=20, | |
| num_images_per_prompt=1, | |
| cross_attention_kwargs={"scale": 0.65}, | |
| output_type="pil", | |
| ).images | |
| image_paths = [save_image(img, prompt) for img in images] | |
| download_links = [create_download_link(path) for path in image_paths] | |
| return image_paths, seed, download_links, get_image_gallery(), image_metadata.values.tolist() | |
| examples = [ | |
| f"{get_random_style()} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.", | |
| f"{get_random_style()} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.", | |
| f"{get_random_style()} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.", | |
| f"{get_random_style()} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.", | |
| f"{get_random_style()} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.", | |
| f"{get_random_style()} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.", | |
| f"{get_random_style()} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.", | |
| f"{get_random_style()} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.", | |
| f"{get_random_style()} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.", | |
| f"{get_random_style()} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach." | |
| ] | |
| css = ''' | |
| .gradio-container{max-width: 1024px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tab("Generate Images"): | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) | |
| with gr.Accordion("Advanced options", open=False): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| lines=4, | |
| max_lines=6, | |
| value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| visible=True | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(visible=True): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=2048, | |
| step=8, | |
| value=1920, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=2048, | |
| step=8, | |
| value=1080, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=20.0, | |
| step=0.1, | |
| value=20.0, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=[result, seed], | |
| fn=generate, | |
| cache_examples=False, | |
| ) | |
| with gr.Tab("Gallery and Voting"): | |
| image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto") | |
| with gr.Row(): | |
| like_button = gr.Button("๐ Like") | |
| dislike_button = gr.Button("๐ Dislike") | |
| heart_button = gr.Button("โค๏ธ Heart") | |
| delete_image_button = gr.Button("๐๏ธ Delete Selected Image") | |
| selected_image = gr.State(None) | |
| with gr.Tab("Metadata and Management"): | |
| metadata_df = gr.Dataframe( | |
| label="Image Metadata", | |
| headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"], | |
| interactive=False | |
| ) | |
| delete_all_button = gr.Button("๐๏ธ Delete All Images") | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| api_name=False, | |
| ) | |
| delete_all_button.click( | |
| fn=delete_all_images, | |
| inputs=[], | |
| outputs=[image_gallery, metadata_df], | |
| ) | |
| image_gallery.select( | |
| fn=lambda evt: evt, | |
| inputs=[], | |
| outputs=[selected_image], | |
| ) | |
| like_button.click( | |
| fn=lambda x: vote(x, 'likes'), | |
| inputs=[selected_image], | |
| outputs=[image_gallery, metadata_df], | |
| ) | |
| dislike_button.click( | |
| fn=lambda x: vote(x, 'dislikes'), | |
| inputs=[selected_image], | |
| outputs=[image_gallery, metadata_df], | |
| ) | |
| heart_button.click( | |
| fn=lambda x: vote(x, 'hearts'), | |
| inputs=[selected_image], | |
| outputs=[image_gallery, metadata_df], | |
| ) | |
| delete_image_button.click( | |
| fn=delete_image, | |
| inputs=[selected_image], | |
| outputs=[image_gallery, metadata_df], | |
| ) | |
| def update_gallery_and_metadata(): | |
| return gr.update(value=get_image_gallery()), gr.update(value=image_metadata.values.tolist()) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| negative_prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| randomize_seed, | |
| ], | |
| outputs=[result, seed, gr.HTML(visible=False), image_gallery, metadata_df], | |
| api_name="run", | |
| ) | |
| demo.load(fn=update_gallery_and_metadata, outputs=[image_gallery, metadata_df]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(share=True, debug=False) |