Spaces:
Sleeping
Sleeping
File size: 1,642 Bytes
6f19838 06de91c 6f19838 06de91c 6f19838 bd26bae 6f19838 bd26bae 6f19838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
import json
import requests
import base64
import os
from pydantic import BaseModel
from PIL import Image
from io import BytesIO
app = FastAPI()
token = os.environ.get("HF_TOKEN")
class Item(BaseModel):
prompt: str
steps: int
guidance: float
modelID: str
@app.post("/api")
async def inference(item: Item):
print("check")
if "dallinmackay" in item.modelID:
prompt = "lvngvncnt, " + item.prompt
if "nousr" in item.modelID:
prompt = "nousr robot, " + item.prompt
if "nitrosocke" in item.modelID:
prompt = "arcane, " + item.prompt
if "dreamlike" in item.modelID:
prompt = "photo, " + item.prompt
if "prompthero" in item.modelID:
prompt = "mdjrny-v4 style, " + item.prompt
data = {"inputs":prompt, "options":{"wait_for_model": True, "use_cache": False}}
API_URL = "https://api-inference.huggingface.co/models/" + item.modelID
headers = {"Authorization": f"Bearer " + token}
api_data = json.dumps(data)
response = requests.request("POST", API_URL, headers=headers, data=api_data)
image_stream = BytesIO(response.content)
image = Image.open(image_stream)
image.save("response.png")
with open('response.png', 'rb') as f:
base64image = base64.b64encode(f.read())
return {"output": base64image}
app.mount("/", StaticFiles(directory="web-build", html=True), name="build")
@app.get('/')
def homepage() -> FileResponse:
return FileResponse(path="/app/build/index.html", media_type="text/html")
|