Spaces:
Runtime error
Runtime error
Create backup2.tryvideoagain.app.py
Browse files- backup2.tryvideoagain.app.py +113 -0
backup2.tryvideoagain.app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
import uuid
|
| 5 |
+
import random
|
| 6 |
+
from glob import glob
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Optional
|
| 9 |
+
from diffusers import StableVideoDiffusionPipeline
|
| 10 |
+
from diffusers.utils import load_image, export_to_video
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 16 |
+
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 17 |
+
)
|
| 18 |
+
pipe.to("cuda")
|
| 19 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 20 |
+
max_64_bit_int = 2**63 - 1
|
| 21 |
+
|
| 22 |
+
# Function to sample video from the input image
|
| 23 |
+
def sample(
|
| 24 |
+
image: Image,
|
| 25 |
+
seed: Optional[int] = 42,
|
| 26 |
+
randomize_seed: bool = True,
|
| 27 |
+
motion_bucket_id: int = 127,
|
| 28 |
+
fps_id: int = 6,
|
| 29 |
+
version: str = "svd_xt",
|
| 30 |
+
cond_aug: float = 0.02,
|
| 31 |
+
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 32 |
+
device: str = "cuda",
|
| 33 |
+
output_folder: str = "outputs",
|
| 34 |
+
):
|
| 35 |
+
if image.mode == "RGBA":
|
| 36 |
+
image = image.convert("RGB")
|
| 37 |
+
if randomize_seed:
|
| 38 |
+
seed = random.randint(0, max_64_bit_int)
|
| 39 |
+
|
| 40 |
+
generator = torch.manual_seed(seed)
|
| 41 |
+
|
| 42 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 43 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 44 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 45 |
+
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
| 46 |
+
export_to_video(frames, video_path, fps=fps_id)
|
| 47 |
+
torch.manual_seed(seed)
|
| 48 |
+
return video_path, seed
|
| 49 |
+
|
| 50 |
+
# Function to resize the uploaded image
|
| 51 |
+
def resize_image(image, output_size=(1024, 576)):
|
| 52 |
+
target_aspect = output_size[0] / output_size[1]
|
| 53 |
+
image_aspect = image.width / image.height
|
| 54 |
+
|
| 55 |
+
if image_aspect > target_aspect:
|
| 56 |
+
new_height = output_size[1]
|
| 57 |
+
new_width = int(new_height * image_aspect)
|
| 58 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 59 |
+
left = (new_width - output_size[0]) / 2
|
| 60 |
+
top = 0
|
| 61 |
+
right = (new_width + output_size[0]) / 2
|
| 62 |
+
bottom = output_size[1]
|
| 63 |
+
else:
|
| 64 |
+
new_width = output_size[0]
|
| 65 |
+
new_height = int(new_width / image_aspect)
|
| 66 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 67 |
+
left = 0
|
| 68 |
+
top = (new_height - output_size[1]) / 2
|
| 69 |
+
right = output_size[0]
|
| 70 |
+
bottom = (new_height + output_size[1]) / 2
|
| 71 |
+
|
| 72 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
| 73 |
+
return cropped_image
|
| 74 |
+
|
| 75 |
+
# Dynamically load image files from the 'images' directory
|
| 76 |
+
def get_example_images():
|
| 77 |
+
image_dir = "images/"
|
| 78 |
+
image_files = glob(os.path.join(image_dir, "*.png")) + glob(os.path.join(image_dir, "*.jpg"))
|
| 79 |
+
return image_files
|
| 80 |
+
|
| 81 |
+
# Gradio interface setup
|
| 82 |
+
with gr.Blocks() as demo:
|
| 83 |
+
gr.Markdown('''# Stable Video Diffusion using Image 2 Video XT
|
| 84 |
+
#### Research release: generate `4s` vid from a single image at (`25 frames` at `6 fps`).''')
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column():
|
| 88 |
+
image = gr.Image(label="Upload your image", type="pil")
|
| 89 |
+
generate_btn = gr.Button("Generate")
|
| 90 |
+
video = gr.Video()
|
| 91 |
+
|
| 92 |
+
with gr.Accordion("Advanced options", open=False):
|
| 93 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
| 94 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 95 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", value=127, minimum=1, maximum=255)
|
| 96 |
+
fps_id = gr.Slider(label="Frames per second", value=6, minimum=5, maximum=30)
|
| 97 |
+
|
| 98 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 99 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
| 100 |
+
|
| 101 |
+
# Dynamically load examples from the filesystem
|
| 102 |
+
example_images = get_example_images()
|
| 103 |
+
gr.Examples(
|
| 104 |
+
examples=example_images,
|
| 105 |
+
inputs=image,
|
| 106 |
+
outputs=[video, seed],
|
| 107 |
+
fn=sample,
|
| 108 |
+
cache_examples=True,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
if __name__ == "__main__":
|
| 112 |
+
demo.queue(max_size=20)
|
| 113 |
+
demo.launch(share=True)
|