Spaces:
Runtime error
Runtime error
Alex Vega
commited on
Commit
·
6c3f7aa
0
Parent(s):
init
Browse files- .gitattributes +1 -0
- Dockerfile +13 -0
- Makefile +9 -0
- main.py +78 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt .
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
EXPOSE 8000
|
12 |
+
|
13 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
|
Makefile
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
run:
|
2 |
+
docker run -p 8001:8000 --name lsp-container lsp-api
|
3 |
+
|
4 |
+
clean:
|
5 |
+
docker stop lsp-container
|
6 |
+
docker rm lsp-container
|
7 |
+
|
8 |
+
build:
|
9 |
+
docker build -t lsp-api .
|
main.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import numpy as np
|
3 |
+
import io
|
4 |
+
import math
|
5 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
app = FastAPI(
|
9 |
+
title="Peruvian Sign Language (LSP) Recognition API",
|
10 |
+
description="Sube una imagen de una seña del alfabeto de la LSP para predecir la letra correspondiente usando un Mapa Autoorganizado (SOM).",
|
11 |
+
version="1.0.0"
|
12 |
+
)
|
13 |
+
|
14 |
+
try:
|
15 |
+
with open('lsp_som_model.pkl', 'rb') as f:
|
16 |
+
model_data = pickle.load(f)
|
17 |
+
som = model_data['som']
|
18 |
+
label_map = model_data['label_map']
|
19 |
+
CLASSES = model_data['classes'] # La lista ['A', 'B', 'C', ...]
|
20 |
+
IMG_SIZE = model_data['img_size'] # El tamaño de la imagen
|
21 |
+
print("✅ Modelo y activos cargados exitosamente.")
|
22 |
+
print(f" - Clases reconocidas: {CLASSES}")
|
23 |
+
print(f" - Tamaño de imagen esperado: {IMG_SIZE}x{IMG_SIZE}")
|
24 |
+
except FileNotFoundError:
|
25 |
+
print("❌ ERROR: No se encontró el archivo del modelo 'lsp_som_model.pkl'.")
|
26 |
+
som = None
|
27 |
+
|
28 |
+
def preprocess_image_from_bytes(image_bytes: bytes):
|
29 |
+
try:
|
30 |
+
img = Image.open(io.BytesIO(image_bytes)).convert('L') # 'L' para escala de grises
|
31 |
+
img = img.resize((IMG_SIZE, IMG_SIZE))
|
32 |
+
img_array = np.array(img)
|
33 |
+
img_normalized = img_array / 255.0
|
34 |
+
return img_normalized.flatten()
|
35 |
+
except Exception as e:
|
36 |
+
raise HTTPException(status_code=400, detail=f"Archivo de imagen inválido. Error: {e}")
|
37 |
+
|
38 |
+
@app.get("/", tags=["Status"])
|
39 |
+
def read_root():
|
40 |
+
return {"status": "ok", "message": "API de Reconocimiento de LSP!!"}
|
41 |
+
|
42 |
+
@app.post("/predict", tags=["Prediction"])
|
43 |
+
async def predict_sign(file: UploadFile = File(..., description="Un archivo de imagen de una seña de la LSP.")):
|
44 |
+
if not som:
|
45 |
+
raise HTTPException(status_code=503, detail="El modelo no está cargado.")
|
46 |
+
|
47 |
+
image_bytes = await file.read()
|
48 |
+
|
49 |
+
feature_vector = preprocess_image_from_bytes(image_bytes)
|
50 |
+
|
51 |
+
winner_neuron = som.winner(feature_vector)
|
52 |
+
|
53 |
+
predicted_index = label_map.get(winner_neuron, -1)
|
54 |
+
|
55 |
+
# Vecino mas cercano para prediccion
|
56 |
+
is_best_guess = False
|
57 |
+
if predicted_index == -1:
|
58 |
+
is_best_guess = True
|
59 |
+
min_dist = float('inf')
|
60 |
+
for mapped_pos, mapped_label in label_map.items():
|
61 |
+
dist = math.sqrt((winner_neuron[0] - mapped_pos[0])**2 + (winner_neuron[1] - mapped_pos[1])**2)
|
62 |
+
if dist < min_dist:
|
63 |
+
min_dist = dist
|
64 |
+
predicted_index = mapped_label
|
65 |
+
|
66 |
+
if predicted_index != -1:
|
67 |
+
predicted_letter = CLASSES[predicted_index]
|
68 |
+
prediction_type = "Nearest Neighbor" if is_best_guess else "Direct Match"
|
69 |
+
else:
|
70 |
+
predicted_letter = "Unknown"
|
71 |
+
prediction_type = "Error (No Mapped Neurons Found)"
|
72 |
+
|
73 |
+
return {
|
74 |
+
"filename": file.filename,
|
75 |
+
"predicted_letter": predicted_letter,
|
76 |
+
"prediction_type": prediction_type,
|
77 |
+
"winner_neuron_on_map": [int(coord) for coord in winner_neuron]
|
78 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
python-multipart
|
4 |
+
minisom
|
5 |
+
numpy
|
6 |
+
Pillow
|