Spaces:
Sleeping
Sleeping
init
Browse files- .gitattributes +1 -35
- Dockerfile +12 -0
- app.py +166 -0
- matrizMM.txt +10 -0
- requirements.txt +6 -0
- somhuella.pkl +3 -0
.gitattributes
CHANGED
@@ -1,35 +1 @@
|
|
1 |
-
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
somhuella.pkl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dockerfile
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12.7
|
2 |
+
WORKDIR /code
|
3 |
+
|
4 |
+
COPY ./requirements.txt /code/requirements.txt
|
5 |
+
RUN pip install --no-cache-dir -r /code/requirements.txt
|
6 |
+
RUN pip install fastapi uvicorn
|
7 |
+
|
8 |
+
COPY . .
|
9 |
+
|
10 |
+
RUN chmod -R 777 /code
|
11 |
+
|
12 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from io import BytesIO
|
5 |
+
import math
|
6 |
+
import pickle
|
7 |
+
import os
|
8 |
+
|
9 |
+
app = FastAPI(title="Fingerprint detection API")
|
10 |
+
|
11 |
+
som_model = None
|
12 |
+
classification_matrix = None
|
13 |
+
|
14 |
+
def sobel(I):
|
15 |
+
m, n = I.shape
|
16 |
+
Gx = np.zeros([m-2, n-2], np.float32)
|
17 |
+
Gy = np.zeros([m-2, n-2], np.float32)
|
18 |
+
gx = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]
|
19 |
+
gy = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]
|
20 |
+
|
21 |
+
for j in range(1, m-2):
|
22 |
+
for i in range(1, n-2):
|
23 |
+
Gx[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gx))
|
24 |
+
Gy[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gy))
|
25 |
+
|
26 |
+
return Gx, Gy
|
27 |
+
|
28 |
+
def medfilt2(G, d=3):
|
29 |
+
m, n = G.shape
|
30 |
+
temp = np.zeros([m+2*(d//2), n+2*(d//2)], np.float32)
|
31 |
+
salida = np.zeros([m, n], np.float32)
|
32 |
+
temp[1:m+1, 1:n+1] = G
|
33 |
+
|
34 |
+
for i in range(1, m):
|
35 |
+
for j in range(1, n):
|
36 |
+
A = np.asarray(temp[i-1:i+2, j-1:j+2]).reshape(-1)
|
37 |
+
salida[i-1, j-1] = np.sort(A)[d+1]
|
38 |
+
|
39 |
+
return salida
|
40 |
+
|
41 |
+
def orientacion(patron, w):
|
42 |
+
Gx, Gy = sobel(patron)
|
43 |
+
Gx = medfilt2(Gx)
|
44 |
+
Gy = medfilt2(Gy)
|
45 |
+
m, n = Gx.shape
|
46 |
+
mOrientaciones = np.zeros([m//w, n//w], np.float32)
|
47 |
+
|
48 |
+
for i in range(m//w):
|
49 |
+
for j in range(n//w):
|
50 |
+
YY = sum(sum(2*Gx[i*w:(i+1)*w, j*w:(j+1)*w]*Gy[i*w:(i+1)*w, j*w:(j+1)*w]))
|
51 |
+
XX = sum(sum(Gx[i*w:(i+1)*w, j*w:(j+1)*w]**2-Gy[i*w:(i+1)*w, j*w:(j+1)*w]**2))
|
52 |
+
mOrientaciones[i, j] = (0.5*math.atan2(YY, XX) + math.pi/2.0)*(180.0/math.pi)
|
53 |
+
|
54 |
+
return mOrientaciones
|
55 |
+
|
56 |
+
def representativo(image_array):
|
57 |
+
if isinstance(image_array, np.ndarray):
|
58 |
+
if len(image_array.shape) == 3:
|
59 |
+
image_array = np.mean(image_array, axis=2)
|
60 |
+
im = Image.fromarray(image_array.astype(np.uint8))
|
61 |
+
else:
|
62 |
+
im = image_array
|
63 |
+
|
64 |
+
im = im.resize((256, 256))
|
65 |
+
m, n = im.size
|
66 |
+
imarray = np.array(im, np.float32)
|
67 |
+
patron = imarray[1:m-1, 1:n-1]
|
68 |
+
EE = orientacion(patron, 14)
|
69 |
+
|
70 |
+
return np.asarray(EE).reshape(-1)
|
71 |
+
|
72 |
+
def is_valid_fingerprint_features(features):
|
73 |
+
if features is None or len(features) != 324:
|
74 |
+
return False
|
75 |
+
|
76 |
+
if np.any(np.isnan(features)) or np.any(np.isinf(features)):
|
77 |
+
return False
|
78 |
+
|
79 |
+
if np.min(features) < 0 or np.max(features) > 180:
|
80 |
+
return False
|
81 |
+
|
82 |
+
orientation_variance = np.var(features)
|
83 |
+
if orientation_variance < 100:
|
84 |
+
return False
|
85 |
+
|
86 |
+
bins = np.histogram(features, bins=18, range=(0, 180))[0]
|
87 |
+
non_empty_bins = np.sum(bins > 0)
|
88 |
+
|
89 |
+
if non_empty_bins < 6:
|
90 |
+
return False
|
91 |
+
|
92 |
+
return True
|
93 |
+
|
94 |
+
def load_trained_model():
|
95 |
+
global som_model, classification_matrix
|
96 |
+
|
97 |
+
try:
|
98 |
+
if os.path.exists('somhuella.pkl'):
|
99 |
+
with open('somhuella.pkl', 'rb') as f:
|
100 |
+
som_model = pickle.load(f)
|
101 |
+
print("OK model")
|
102 |
+
else:
|
103 |
+
print("cargar somhuella.pkl")
|
104 |
+
return False
|
105 |
+
|
106 |
+
if os.path.exists('matrizMM.txt'):
|
107 |
+
classification_matrix = np.loadtxt('matrizMM.txt')
|
108 |
+
print("OK matrix")
|
109 |
+
else:
|
110 |
+
print("load matrix")
|
111 |
+
return False
|
112 |
+
|
113 |
+
return True
|
114 |
+
except Exception as e:
|
115 |
+
print(f"error {e}")
|
116 |
+
return False
|
117 |
+
|
118 |
+
def detect_and_classify_fingerprint(features):
|
119 |
+
global som_model, classification_matrix
|
120 |
+
|
121 |
+
if not is_valid_fingerprint_features(features):
|
122 |
+
return False, "no fingerprint patterns"
|
123 |
+
|
124 |
+
if som_model is None or classification_matrix is None:
|
125 |
+
return True, "Fingerprint pattern detected"
|
126 |
+
|
127 |
+
try:
|
128 |
+
winner = som_model.winner(features)
|
129 |
+
|
130 |
+
classification_value = classification_matrix[winner]
|
131 |
+
if classification_value == -1:
|
132 |
+
return False, "no pattern"
|
133 |
+
|
134 |
+
class_names = {
|
135 |
+
0: "LEFT_LOOP",
|
136 |
+
1: "RIGHT_LOOP",
|
137 |
+
2: "WHORL",
|
138 |
+
3: "ARCO"
|
139 |
+
}
|
140 |
+
|
141 |
+
class_name = class_names.get(int(classification_value), "UNKNOWN")
|
142 |
+
|
143 |
+
return True, f"{class_name} fingerprint detected (class {int(classification_value)})"
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
print(f"Error in SOM class: {e}")
|
147 |
+
return True, "Fingerprint pattern detected (classification error)"
|
148 |
+
|
149 |
+
load_trained_model()
|
150 |
+
|
151 |
+
@app.post("/detect_fingerprint/")
|
152 |
+
async def detect_fingerprint(file: UploadFile = File(...)):
|
153 |
+
try:
|
154 |
+
contents = await file.read()
|
155 |
+
image = Image.open(BytesIO(contents))
|
156 |
+
image_array = np.array(image)
|
157 |
+
features = representativo(image_array)
|
158 |
+
is_fingerprint, details = detect_and_classify_fingerprint(features)
|
159 |
+
|
160 |
+
return {
|
161 |
+
"fingerprint_detected": is_fingerprint,
|
162 |
+
"details": details
|
163 |
+
}
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
raise HTTPException(status_code=500, detail=f"error processing image: {str(e)}")
|
matrizMM.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-1.000000000000000000e+00 1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 3.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 0.000000000000000000e+00
|
2 |
+
-1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00
|
3 |
+
2.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 0.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00
|
4 |
+
-1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00
|
5 |
+
-1.000000000000000000e+00 -1.000000000000000000e+00 1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 0.000000000000000000e+00
|
6 |
+
-1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 2.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00
|
7 |
+
3.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00
|
8 |
+
-1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 3.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00
|
9 |
+
-1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00
|
10 |
+
3.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 1.000000000000000000e+00 -1.000000000000000000e+00 -1.000000000000000000e+00 2.000000000000000000e+00
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi[standard]
|
2 |
+
uvicorn[standard]
|
3 |
+
python-multipart
|
4 |
+
Pillow
|
5 |
+
numpy
|
6 |
+
minisom
|
somhuella.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4ec5da7c0d90219b85de5d191eeb0356c5d7ffba9310d979872378b48893f90
|
3 |
+
size 268015
|