Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
from PIL import Image | |
import torch | |
import io | |
MODEL_NAME = "ahmed-masoud/sign_language_translator" | |
try: | |
processor = ViTImageProcessor.from_pretrained(MODEL_NAME) | |
model = ViTForImageClassification.from_pretrained(MODEL_NAME) | |
print(f"Modelo '{MODEL_NAME}' cargado") | |
except Exception as e: | |
print(f"Error al cargar el modelo {e}") | |
model = None | |
processor = None | |
app = FastAPI(title="API de ASL con modelo de HF") | |
async def translate_sign(file: UploadFile = File(...)): | |
if not model or not processor: | |
return {"error": "Modelo no disponible."} | |
image_bytes = await file.read() | |
image = Image.open(io.BytesIO(image_bytes)) | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_idx = logits.argmax(-1).item() | |
predicted_label = model.config.id2label[predicted_class_idx] | |
return {"prediction": predicted_label} | |
def read_root(): | |
return {"message": "API ok. Usa el endpoint /predict/ para predecir."} | |