Spaces:
Sleeping
Sleeping
Alex Vega
commited on
Commit
·
e373c5a
1
Parent(s):
212f1ad
up
Browse files
main.py
CHANGED
@@ -1,23 +1,27 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
-
from transformers import
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import io
|
6 |
|
7 |
-
MODEL_NAME = "
|
8 |
|
9 |
|
10 |
try:
|
11 |
-
|
|
|
12 |
|
13 |
-
model =
|
14 |
|
15 |
-
print(f"Modelo '{MODEL_NAME}' cargado")
|
|
|
16 |
|
17 |
except Exception as e:
|
18 |
-
print(f"Error al cargar el modelo {e}")
|
|
|
19 |
model = None
|
20 |
processor = None
|
|
|
21 |
|
22 |
app = FastAPI(title="API de ASL con modelo de HF")
|
23 |
|
@@ -25,24 +29,46 @@ app = FastAPI(title="API de ASL con modelo de HF")
|
|
25 |
@app.post("/predict/")
|
26 |
async def translate_sign(file: UploadFile = File(...)):
|
27 |
if not model or not processor:
|
28 |
-
return {
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
@app.get("/")
|
47 |
def read_root():
|
48 |
return {"message": "API ok. Usa el endpoint /predict/ para predecir."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import io
|
6 |
|
7 |
+
MODEL_NAME = "prithivMLmods/Alphabet-Sign-Language-Detection"
|
8 |
|
9 |
|
10 |
try:
|
11 |
+
print(f"Cargando modelo '{MODEL_NAME}'...")
|
12 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
13 |
|
14 |
+
model = SiglipForImageClassification.from_pretrained(MODEL_NAME)
|
15 |
|
16 |
+
print(f"Modelo '{MODEL_NAME}' cargado exitosamente")
|
17 |
+
model_loaded = True
|
18 |
|
19 |
except Exception as e:
|
20 |
+
print(f"Error al cargar el modelo: {e}")
|
21 |
+
print("Usando modelo de ejemplo. Para uso real, necesitas un modelo específico de ASL.")
|
22 |
model = None
|
23 |
processor = None
|
24 |
+
model_loaded = False
|
25 |
|
26 |
app = FastAPI(title="API de ASL con modelo de HF")
|
27 |
|
|
|
29 |
@app.post("/predict/")
|
30 |
async def translate_sign(file: UploadFile = File(...)):
|
31 |
if not model or not processor:
|
32 |
+
return {
|
33 |
+
"error": "Modelo no disponible.",
|
34 |
+
"message": "El modelo específico de ASL no pudo cargarse. Verifica que el modelo existe en Hugging Face.",
|
35 |
+
"model_attempted": MODEL_NAME
|
36 |
+
}
|
37 |
|
38 |
+
try:
|
39 |
+
image_bytes = await file.read()
|
40 |
+
image = Image.open(io.BytesIO(image_bytes))
|
41 |
|
42 |
+
inputs = processor(images=image, return_tensors="pt")
|
43 |
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = model(**inputs)
|
46 |
+
logits = outputs.logits
|
47 |
+
|
48 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
49 |
|
50 |
+
predicted_class_idx = logits.argmax(-1).item()
|
51 |
+
confidence = probs[0][predicted_class_idx].item()
|
52 |
+
|
53 |
+
predicted_label = model.config.id2label[predicted_class_idx]
|
54 |
|
55 |
+
return {
|
56 |
+
"prediction": predicted_label,
|
57 |
+
"confidence": round(confidence * 100, 2)
|
58 |
+
}
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
return {"error": f"Error al procesar la imagen: {str(e)}"}
|
62 |
|
63 |
|
64 |
@app.get("/")
|
65 |
def read_root():
|
66 |
return {"message": "API ok. Usa el endpoint /predict/ para predecir."}
|
67 |
+
|
68 |
+
@app.get("/status/")
|
69 |
+
def get_status():
|
70 |
+
return {
|
71 |
+
"model_loaded": model_loaded,
|
72 |
+
"model_name": MODEL_NAME,
|
73 |
+
"message": "Modelo cargado correctamente" if model_loaded else "Modelo no disponible"
|
74 |
+
}
|