File size: 4,287 Bytes
5009b7f
 
 
 
 
 
 
 
 
 
d0555d0
 
5009b7f
 
d0555d0
5009b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cc692c
5009b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a6ea8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import time
import numpy as np
from torch.nn import functional as F
import os
from threading import Thread

model_path = "ayoolaolafenwa/ChatLM"

tokenizer = AutoTokenizer.from_pretrained(model_path)

model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code = True, device_map = "auto",
torch_dtype=torch.bfloat16, load_in_8bit=True)

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [0]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


def user(message, history):
    # Append the user's message to the conversation history
    return "", history + [[message, ""]]


def chat(curr_system_message, history):
    # Initialize a StopOnTokens object
    stop = StopOnTokens()

    # Construct the input message string for the model by concatenating the current system message and conversation history
    messages = curr_system_message + \
        "".join(["".join(["<user>: "+item[0], "<chatbot>: "+item[1]])
                for item in history])
        
    # Tokenize the messages string
    tokens = tokenizer([messages], return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(
        tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
   
    token_ids = tokens.input_ids
    attention_mask=tokens.attention_mask
    
    generate_kwargs = dict(
       input_ids=token_ids, 
        attention_mask = attention_mask,  
        streamer = streamer,
        max_length=2048,
        do_sample=True,
        num_return_sequences=1,
        eos_token_id=tokenizer.eos_token_id, 
        temperature = 0.7,
        stopping_criteria=StoppingCriteriaList([stop])
    ) 
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()    

    #Initialize an empty string to store the generated text
    partial_text = ""
    for new_text in streamer:
        # print(new_text)
        partial_text += new_text
        history[-1][1] = partial_text
        # Yield an empty string to cleanup the message textbox and the updated conversation history
        yield history
    return partial_text
    



with gr.Blocks() as demo:
    # history = gr.State([])
    gr.Markdown("# ChatLM")

    with gr.Row():
        with gr.Column():
            gr.Markdown(
                    """
                    ChatLM is a chat Large Language model finetuned with pretrained [Falcon-1B model](https://huggingface.co/tiiuae/falcon-rw-1b)
                    and trained on [chat-bot-instructions prompts dataset](https://huggingface.co/datasets/ayoolaolafenwa/sft-data).
                    ChatLM was trained on a dataset containing normal day to day human conversations, due to limited data used in training
                    it is not suitable for tasks like coding and current affairs. 
                    """
                )
 
    chatbot = gr.Chatbot().style(height=300)
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
                             show_label=False).style(container=False)
        with gr.Column():
            with gr.Row():
                submit = gr.Button("Run")
                stop = gr.Button("Stop")
                clear = gr.Button("Clear")
    system_msg = gr.Textbox(
        label="Response Message", interactive=False, visible=False)

    submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
        fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
    submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
        fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
    stop.click(fn=None, inputs=None, outputs=None, cancels=[
               submit_event, submit_click_event], queue=False)
    clear.click(lambda: None, None, [chatbot], queue=False)


demo.queue(max_size=32, concurrency_count=2)
demo.launch(share = True)