Spaces:
Sleeping
Sleeping
File size: 17,516 Bytes
e6ebc66 9e49c5e 8350677 e6ebc66 9e49c5e 93c135a e6ebc66 4c2db85 e6ebc66 cbfa5ed 1470587 71c46cf e6ebc66 9e49c5e e6ebc66 4c2db85 9e49c5e e6ebc66 9e49c5e 4c2db85 7146778 4c2db85 9e49c5e e6ebc66 062307f e6ebc66 9e49c5e e6ebc66 9e49c5e e6ebc66 9e49c5e 062307f 9e49c5e 062307f 173a790 062307f 9e49c5e e6ebc66 dd4c30f e6ebc66 6d394f8 93c135a e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 9e49c5e e6ebc66 9e49c5e e6ebc66 9e49c5e 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 4c2db85 e6ebc66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# app.py
import os
from opik import track
import gradio as gr
import requests
from smolagents import DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool, LiteLLMModel, CodeAgent, tool , OpenAIServerModel , PythonInterpreterTool
from pathlib import Path
import pathlib
import tempfile
import PyPDF2
from opik.integrations.openai import track_openai
import pytesseract
from PIL import Image
from smolagents.tools import PipelineTool, Tool
from typing import Union, Optional
import pandas as pd
from tabulate import tabulate # pragma: no cover β fallback path
import re
import opik
import time
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type, before_sleep_log
import logging
import random
import sys
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
GROQ_API_KEY = os.getenv("Grok_api") # set as Secret in your Space
OPIK_API_KEY = os.getenv("OPIK_API_KEY") # set as Secret in your Space
OPIK_WORKSPACE = os.getenv("OPIK_WORKSPACE") # set as Variable in your Space
# ββ 2) Configure litellm & OpikLogger βββββββββββββββββββββββββββββββββββββββββ
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["OPIK_API_KEY"] = OPIK_API_KEY
os.environ["OPIK_WORKSPACE"] = OPIK_WORKSPACE
class ExcelToTextTool(Tool):
"""Render an Excel worksheet as Markdown text."""
# ------------------------------------------------------------------
# Required smolβagents metadata
# ------------------------------------------------------------------
name = "excel_to_text"
description = (
"Read an Excel file and return a Markdown table of the requested sheet. "
"Accepts either the sheet name or the zero-based index."
)
inputs = {
"excel_path": {
"type": "string",
"description": "Path to the Excel file (.xlsx / .xls).",
},
"sheet_name": {
"type": "string",
"description": (
"Worksheet name or zeroβbased index *as a string* (optional; default first sheet)."
),
"nullable": True,
},
}
output_type = "string"
# ------------------------------------------------------------------
# Core logic
# ------------------------------------------------------------------
def forward(
self,
excel_path: str,
sheet_name: Optional[str] = None,
) -> str:
"""Load *excel_path* and return the sheet as a Markdown table."""
path = pathlib.Path(excel_path).expanduser().resolve()
if not path.exists():
return f"Error: Excel file not found at {path}"
try:
# Interpret sheet identifier -----------------------------------
sheet: Union[str, int]
if sheet_name is None or sheet_name == "":
sheet = 0 # first sheet
else:
# If the user passed a numeric string (e.g. "1"), cast to int
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name
# Load worksheet ----------------------------------------------
df = pd.read_excel(path, sheet_name=sheet)
# Render to Markdown; fall back to tabulate if needed ---------
if hasattr(pd.DataFrame, "to_markdown"):
return df.to_markdown(index=False)
from tabulate import tabulate # pragma: no cover β fallback path
return tabulate(df, headers="keys", tablefmt="github", showindex=False)
except Exception as exc: # broad catch keeps the agent chatβfriendly
return f"Error reading Excel file: {exc}"
def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
"""
Try GET /files/{task_id}.
β’ On HTTP 200 β save to a temp dir and return local path.
β’ On 404 β return None.
β’ On other errors β raise so caller can log / handle.
"""
url = f"{base_api_url}/files/{task_id}"
try:
resp = requests.get(url, timeout=30)
if resp.status_code == 404:
return None # no file
resp.raise_for_status() # raise on 4xx/5xx β 404
except requests.exceptions.HTTPError as e:
# propagate non-404 errors (403, 500, β¦)
raise e
# βΈ Save bytes to a named file inside the system temp dir
# Try to keep original extension from Content-Disposition if present.
cdisp = resp.headers.get("content-disposition", "")
filename = task_id # default base name
if "filename=" in cdisp:
m = re.search(r'filename="([^"]+)"', cdisp)
if m:
filename = m.group(1) # keep provided name
tmp_dir = Path(tempfile.gettempdir()) / "gaia_files"
tmp_dir.mkdir(exist_ok=True)
file_path = tmp_dir / filename
with open(file_path, "wb") as f:
f.write(resp.content)
return str(file_path)
@tool
def pdf_to_text_tool(pdf_path: str) -> str:
"""
Extract all text from a PDF file.
Args:
pdf_path : Path to pdf's
Returns:
Analysis result or error message
"""
path = Path(pdf_path).expanduser().resolve()
if not path.exists():
return f"Error: PDF file not found at {path}"
try:
reader = PyPDF2.PdfReader(str(path))
text = "\n".join(page.extract_text() or "" for page in reader.pages)
return text
except Exception as e:
return f"Error reading PDF file: {e}"
@tool
def analyze_image_tool(image_path: str) -> str:
"""
Analyze an image: return dimensions and OCR-extracted text.
Args:
image_path : Image path
Returns:
Analysis result or error message
"""
path = Path(image_path).expanduser().resolve()
if not path.exists():
return f"Error: Image not found at {path}"
try:
img = Image.open(path)
w, h = img.size
ocr_text = pytesseract.image_to_string(img)
return f"Dimensions: {w}Γ{h}\n\nOCR Text:\n{ocr_text}"
except Exception as e:
return f"Error analyzing image: {e}"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
self.agent = CodeAgent(
model=OpenAIServerModel(model_id="gpt-4o"),
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool(), ExcelToTextTool(), pdf_to_text_tool, analyze_image_tool,PythonInterpreterTool()],
add_base_tools=True,
additional_authorized_imports=['pandas', 'numpy', 'csv', 'subprocess']
)
# Response cache to avoid duplicate API calls
self.response_cache = {}
logger.info("BasicAgent initialized.")
def __call__(self, question: str) -> str:
logger.info(f"Agent received question (first 50 chars): {question[:50]}...")
# Check cache first
if question in self.response_cache:
logger.info("Using cached response")
return self.response_cache[question]
try:
# Use the retry wrapper to handle rate limits
fixed_answer = call_llm_with_retry(self.agent, question)
logger.info(f"Agent returning answer (first 50 chars): {fixed_answer[:50] if fixed_answer else 'None'}...")
# Cache the response
self.response_cache[question] = fixed_answer
return fixed_answer
except Exception as e:
error_msg = f"Failed after multiple retries: {e}"
logger.error(error_msg)
return f"The model experienced an issue that couldn't be resolved with retries: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = "l3xv/Final_Assignment_Template"
if profile:
username = f"{profile.username}"
logger.info(f"User logged in: {username}")
else:
logger.warning("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
logger.error(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
logger.info(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
logger.warning("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
logger.info(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
logger.error(f"Error decoding JSON response from questions endpoint: {e}")
logger.error(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
logger.error(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent with rate limit handling and batching
results_log = []
answers_payload = []
logger.info(f"Running agent on {len(questions_data)} questions...")
# Process questions with a small delay between them to avoid rate limits
batch_size = 1 # Process one at a time for rate limiting
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
continue
# ----------fetch any attached file ----------
try:
file_path = download_file_if_any(api_url, task_id)
except Exception as e:
file_path = None
logger.error(f"[file fetch error] {task_id}: {e}")
# ---------- Build the prompt sent to the agent ----------
if file_path:
q_for_agent = (
f"{question_text}\n\n"
f"---\n"
f"A file was downloaded for this task and saved locally at:\n"
f"{file_path}\n"
f"---\n\n"
)
else:
q_for_agent = question_text
try:
logger.info(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
submitted_answer = agent(q_for_agent)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# Add a delay between questions to manage rate limits
if i < len(questions_data) - 1: # Don't delay after the last question
delay = random.uniform(5, 10) # Random delay between 5-10 seconds
logger.info(f"Processed question {i+1}/{len(questions_data)}. Waiting {delay:.2f}s before next question...")
time.sleep(delay)
except Exception as e:
logger.error(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
logger.warning("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
logger.info(status_update)
# 5. Submit
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
logger.info("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
logger.error(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
logger.error(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
logger.error(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
logger.error(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
banner = "\n" + "-"*30 + " App Starting " + "-"*30
logger.info(banner)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = "l3xv/Final_Assignment_Template"
if space_host_startup:
logger.info(f"β
SPACE_HOST found: {space_host_startup}")
logger.info(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
logger.info("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
logger.info(f"β
SPACE_ID found: {space_id_startup}")
logger.info(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
logger.info(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
logger.info("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
logger.info("-"*(60 + len(" App Starting ")) + "\n")
logger.info("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |